

BEFORE OPERATING THE HTTP

Important Notice!

Figure 1.1

The HTTP flow meter is equipped with a Lead Acid Gel Cell battery. This battery will require charging before initial operation.

Apply power, utilizing the enclosed 12 Volt DC output line power converter or cigarette-style power cord, to the HTTP for a period of <u>16-24 hours prior to using the</u> <u>product for the first time</u>. The power converter connects to the **DC IN +12V** socket connection located on the side of the enclosure. See **Figure 1.1**. A fully charged battery will provide up to 24 hours of continuous operation before recharging will be necessary.

When the battery level has decreased to a point where recharging is required, the LOW BATTERY indicator will illuminate on the front panel. At that point, the meter will only operate a short time more until it automatically turns itself off-preventing excessive battery discharge that can damage the Gel Cell battery. The HTTP has an integral charging circuit that prevents overcharging. The instrument can be permanently connected to AC line power without damaging the flow meter or the battery. Page 1.10 of this manual contains additional recommendations to preserve and maximize the power in the HTTP battery.

If the HTTP is to be used for extended periods of operation, the AC power converter or the 12 volt cigarette converter can remain connected indefinitely.

	Quick-Start Operating Instructions	Pages 1.4-1.5
Part 1 -	Introduction	
Introduction	General	1.6
	Applications	1.6
	Product Matrix	1.7
	Product Specifications	1.8
Connections	Transmitter Connections	1.9-1.10
	Battery Charging and Maintenance	1.10-1.12
Inputs and	Input/Output Connections and Options	
Outputs	4-20 mA Output	1.13
	optional Data Logger	1.14
	optional Dual Control Relay	1.14
	optional Rate Pulse Output	1.15
	optional RS232C	1.15
Part 2 -	optional RS485	1.15
Transducer	Transducer Mounting	
Installation	Mounting Location	2.1-2.2
	Transducer Mounting Method	2.3-2.5
	Transducer Spacing - Keypad Entry	2.6-2.13
	Transducer Spacing - <i>UltraLink</i> [™]	2.13-2.14
	Pipe Preparation	2.15
	Transducer Mounting	2.15-2.21

TABLE OF CONTENTS

Dort 2		Pages
Operation	General Programming Information	3.1-3.4
oporation	Keypad Entry Detail	3.4-3.25
	BASIC MENU	3.4-3.13
	DATALOG OPERATION	3.14-3.16
	OUT2 MENU 4-20 mA	3.17-3.19
	Optional Input/Output	3.20-3.24
	SECURITY MENU	3.25
	SERVICE MENU	3.26-3.27
	Signal Strength	3.26
	Setting ZERO Flow	3.27
	DISPLAY MENU	3.28-3.29
Part 4 -		
Software	Software Utility Operation	
	UltraLink [™]	4.1-4.9
	Data Logger	4.14-4.16
	Appendix	
	Keypad Interface Map	
	Fluid Characteristic Table	
	Error Codes	
	Digital Communications Protocol	
	Pipe Dimension Chart: Cast Iron	
	Pipe Dimension Chart: Ductile Iron	
	Pipe Dimension Chart: ST, SS, PVC	
	Velocity to Volumetric Conversion	
	Customer Service	
	Statement of Warranty	

QUICK-START OPERATING INSTRUCTIONS

This manual contains detailed operating instructions for all aspects of the HTTP instrument. The following condensed instructions are provided to assist the operator in getting the instrument configured and measuring as quickly as possible. This pertains to basic operation only. If specific instrument features are to be used or if the installer is unfamiliar with this type of instrument, refer to the appropriate section in the manual for complete details.

1. TRANSDUCER LOCATION

- A. In general, select a mounting location on the piping system with a minimum of 10 pipe diameters (10 times the pipe inside diameter) of straight pipe upstream and 5 straight diameters downsteam. See Table 2.1 for detailed piping configurations and recommended lengths of straight pipe.
- B. Select a mounting method for the transducers based on pipe size and liquid characteristics. See Figure 1.2. Select W-Mount for plastic pipes flowing clean, non-aerated liquids in the 2-3 inch (50-75 mm) internal diameter range. Select V-Mount for pipes of all materials and most liquids in pipe sizes from 2-10 inches (50-250 mm). Select Z-Mount for pipes 10-100 inches (250-2540 mm) inches.

Figure 1.2

Transducer Location

QUICK-START OPERATING INSTRUCTIONS

*Nominal values for these parameters are included within the HTTP operating system. The nominal values may be used as they appear or may be modified if exact system values are known.

Figure 1.3

Connections

Startup

C. Enter the following data into the HTTP transmitter via the integral keypad or UltraLink[™] software utility.

Fluid type

11.

Fluid viscositv*

12. Fluid specific gravity*

- Transducer mounting method 9. 1. 10. Fluid sound speed*
- Pipe O.D. (Outside Diameter) 2.
- Pipe wall thickness 3.
- 4. Pipe material
- Pipe sound speed* 5.
- Pipe relative roughness* 6.
- Pipe liner thickness (if present) 7.
- Pipe liner material (if present) 8.
- D. Record the value calculated and displayed as Transducer Spacing/XDCR SPC.

2. PIPE PREPARATION AND TRANSDUCER MOUNTING

- A. The piping surface, where the transducers are to be mounted, needs to be clean and dry. Remove loose scale, rust and paint to ensure satisfactory acoustical bonds.
- B. Apply a liberal amount of couplant grease onto the transducer faces.
- C. Attach the transducers to the pipe at the location(s) determined in Step 1. Refer to Figure 1.2 for proper orientation.

3. TRANSDUCER/POWER CONNECTIONS

- A. If additional transducer cable is required, utilize RG59 coaxial wire with 75 Ohm terminations.
- B. Refer to the WIRING DIAGRAM located on the inner door of the HTTP transmitter and Figure 1.3 for proper power and transducer connections.

4. INITIAL SETTINGS AND POWER UP

- A. Press the ON button on the flow meter keypad.
- B. From the Service Menu, verify that signal strength is greater than 2.0%.
- C. Input proper units of measure and I/O data.

PART 1 - INTRODUCTION

General

The HTTP ultrasonic flow meter is designed to measure the fluid velocity of liquid within closed conduit (pipe). The transducers are a non-contacting, clamp-on type, which will provide benefits of non-fouling operation and ease of installation.

HTTP transit time flow meters utilize two transducers that function as both ultrasonic transmitters and receivers. The transducers are clamped on the outside of a closed

pipe <u>at a specific distance from each other</u>. The transducers can be mounted in V-mode where the sound transverses the pipe two times, W-mode where the sound transverses the pipe four times, or in Z-mode where the transducers are mounted on opposite sides of the pipe and the sound crosses the pipe once. This selection is based on pipe and liquid characteristics. The flow meter operates by alternately transmitting and receiving a frequency modulated burst of sound energy between the two transducers and measuring the time interval that it takes for sound to travel between the two transducers. The difference in the time interval measured is directly related to the velocity of the liquid in the pipe.

The HTTP flow meter can be successfully applied on a wide range of metering applications. The simple to program transmitter allows the standard product to be used on pipe sizes ranging from 2 - 100 inch (50 - 2540 mm) internal diameters. A variety of liquid applications can be accommodated: ultrapure liquids, potable water, chemicals, raw sewage, reclaimed water, cooling water, river water, plant effluent, etc. Because the transducers are non-contacting and have no moving parts, the flow meter is not affected by system pressure, fouling or wear. Standard transducers are rated to 300 °F (150 °C). Higher temperatures can be accommodated. Please consult the Hedland factory for assistance.

Application Versatility

PART 1 - INTRODUCTION

User Safety	The HTTP employs modular construction and provides electrical safety for the operator. The display face contains voltages no greater than 10 Vdc. All user connections are made through sealed bulk-head plugs located on the side of the HTTP enclosure.
Data Integrity	Non-volatile flash memory retains all user-entered configuration values in memory for several years, even if power is lost or the unit is turned off. Data Logger values are stored in flash memory in the logger. Password protection is provided as part of the Security menu and prevents inadvertent configuration changes or totalizer resets.
Product Identification	The serial number and complete model number of your HTTP is located on the inside of the transmitter's front cover. Should technical assistance be required, please provide the Hedland Customer Service Department with

this information.

Product Matrix

Replacement Parts	Part Number
HTTP Flow meter	HTTP-001
Data Logger, 200,000-event	HTTP-004
Padded carrying case	HTTP-008
Standard Transducer Set	HTTP-012
High Temp Transducer Set	HTTP-016
Transducer Cable set, 20 ft. (6m)	HTTP-COAX-20
Acoustic Grease, temporary mount	HTTF-CPLNT2
Mounting Track, w/measuring scale	HTTF-MTRK
36 inch SS hose clamp	HTTF-HCLP
Power converter, 115 V U.S.	HTTP-044
Power converter, 230 V European	HTTP-048
Power converter, 230 V U.K.	HTTP-052
Power cord, 12 V cigarette-style	HTTP-060
4-20 mA interconnect cable	HTTP-064
Infrared serial adapter	HTTP-072
USB to DB-9 adapter	HTTP-076
ULTRALink software CD	HTTP-086
Manual, HTTP flow meter	HTTP-MANUAL

¹ The data logger records up to 30,000 points per file, with a maximum of 16 files. The total number of points that can be recorded on the logger is 200,000.

PART 1 - SPECIFICATIONS

DESCRIPTION	SPECIFICATION
Liquid Types	Virtually all non-aerated liquids
Power	Internal 12 V lead-acid Gel Cell battery provides 24 hours of continuous operation @ 20 °C
	Charging: Wall mount power converter
	115 or 230 VAC 50/60 Hz 15% @ 5 VA maximum; 12-15 VDC @ 2.5 VA maximum
Velocity	-40 to +40 FPS (-12 to +12 MPS)
Inputs/Outputs	All output modules are optically isolated from earth and system grounds
	One module and one data logger may be installed
Standard Options	4-20 mA: 800 Ohms maximum, 12-bit resolution, passive or active
	Data Logger: 200,000 event, 16-bit, integral DB-9 RS232C connection, can be removed and installed without
	disconnecting system power, data transfer rates to 57.6K
Other Options	Rate Pulse: MOFSET, 0.21 Ohms, 100 V maximum, 0-2,500 Hz
	Dual Relay: Two separate Form C relays, 200 VAC maximum @ 0.5 A resistive
	RS232C: Data rate to 57.6K
	RS485: Supports up to 126 drops
Display	128 x 64 pixel graphics LCD, LED back-lit
	Two user selectable font sizes: 0.35" (8.9 mm) or 0.2" (5 mm)
	8 digit rate, 8 digit totalizer (resettable)
Units	User configured: Feet, gallons, ft3, Mil-gal, barrels, acre-feet, lbs, meters, liters, m3, Mil-liters, kg
	Rate: Sec, min, hr, day
	Iotalizer: (NEI, FWD, REV or BAICH) gallons, ft ³ , barrels, acre-feet, lbs, liters, m ³ , kg
Ambient Conditions	-40 °F to +185 °F (-40 °C to +85 °C), 0-95% relative humidity, non-condensing
(Pipe Surface)	HTTN: -40 °F to +300 °F (-40 °C to +121 °C)
(Pipe Surface)	HTTE: 40 °F to +400 °F (-40 °C to +200 °C)
Enclosuro	HTTS: -40 °F (0 + 185 °F (-40 °C (0 +85 °C))
Enclosure	ARS with SS bardware: 14 8 lbc (6.7 kg)
	$14.00W \times 6.06H \times 10.56D inches (355.6W \times 153.0H \times 268.2D mm)$
Transducers	HTTN: CP/C litem [®] and Nylon - NEMA 6 (IP 68)
Indiisuuceis	HTTH: OF VO, Ottern- and Nickel-plated Brass - NEMA 6 (IP 68)
	HTTS: PVC. Litem® SS. Zinc-plated Steel and Nylon - NEMA 4X (IP 66)
Line Sizes	2 inches (50 mm) and higher
	Optional: Small line sizes of less than 2" (50 mm), requires HTTS transducer
Transducer to	20 feet (6.09 meters)
Transmitter Distance	Optional: Lengths to 990 feet (300 meters), consult factory
Accuracy	$\pm 0.5\%$ of reading at rates > 1 FPS (0.3 MPS) for field calibrated systems
	$\pm 1\%$ of reading rates > 1 FPS (0.3 MPS) uncalibrated
	0.1 FPS (0.03 MPS) at rates < 1 FPS (0.3 MPS)
Sensitivity	Flow: 0.001 FPS (0.0003 MPS)
Repeatability	±0.01% of reading
Response Time	Flow: 0.3-30 seconds, user configures, to 100% of value, step change in flow
Security	Keypad lockout, four digit user selected access code
Transducer Installation	General Purpose
	Optional: Class I Division 1, Groups C and D
Approvals	Ordinary Area
ULTRALINK™ Utility	IBM Compatible, Windows [®] 95/98/2000/XP operating system

Transmitter Location Considerations	After unpacking, it is recommended to save the shipping carton and packing materials in case the instrument is stored or re-shipped. Inspect the equipment and carton for damage. If there is evidence of shipping damage, notify the carrier immediately.
	When the HTTP is to be utilized for extended periods of time in one location, the enclosure should be placed in an area that is convenient for servicing, calibration or for observation of the LCD readout.
	 Locate the transmitter within the length of transducer cable that was supplied with the HTTP system. If this is not possible, additional cable should be RG59 co- axial cable and terminations should be 75 Ohm. Longer cables are also available by contacting the Hedland factory.
	2. Place the HTTP transmitter in a location that is:
	 Where little vibration exists.
	 Protected from falling corrosive fluids.
	 Within ambient temperature limits -40 to 185 °F (-40 to 85 °C).
	 Out of direct sunlight. Direct sunlight may increase transmitter temperatures above maximum limit.
	 If the transmitter will be subjected to a wet environment, it is recommended that the cover remain closed and the latches secured after configuration is completed. The faceplate/keypad of the HTTP is watertight, but avoid letting water collect on the keypad area.
	It is highly recommended that the internal battery in the HTTP be fully charged before using the meter for the first time. Details covering this procedure are located on Page 1.1 of this manual.

Electrical Connections

Figure 1.4

Battery Charging and External Power Sources

- 1. The connectors located on the side of the HTTP consist of three 1/4 turn BNC-type and one 5.5mm power plug. These connectors are environmentally sealed, but it is recommended not to allow water or other liquids to collect in the electrical connections pocket.
- 2. Connect the appropriate wires to the corresponding connections on the transmitter. The transducer cable has markings of UPSTREAM and DOWNSTREAM to assist in the installation process. The UPSTREAM transducer is the one located closer to the direction from which fluid flow normally comes from (The fluid normally passes the UPSTREAM transducer before passing the DOWNSTREAM transducer). If the transducer wires are connected backwards, a negative flow indication will be observed on the flow meter display. See **Figure 1.4** or the Wiring Diagram located on the inner door of the transmitter.

NOTE: The transducer cables carry low level signals. If additional cable is required, it must be RG59 coaxial cable with 75 Ohm terminations. Longer cables are also available from the Hedland factory.

The 12 Volt DC power converter and 12 Volt cigarettestyle power cord connect to the socket connection located on the side of the enclosure. See **Figure 1.4**. A fully charged battery will provide up to 24 hours of continuous operation before recharging will be necessary. When the battery level has decreased to a point where recharging is required, the LOW BATTERY indicator will illuminate on the front panel. At that point, the meter will only operate a short time more until it automatically turns itself off preventing excessive battery discharge that can damage the Gel Cell battery.

If the HTTP is to be used for extended periods of operation, the 12 Vdc line power converter or the 12 V cigarette converter can remain connected indefinitely.

To charge the internal Gel Cell battery, apply power, utilizing the enclosed 12 Vdc line power converter or cigarette-style power cord, to the HTTP for a period of <u>16-</u> <u>24 hours.</u> The HTTP has an integral charging circuit that prevents overcharging. The instrument can be permanently connected to AC line power without damaging the flow meter or the battery.

The Gel Cell battery is "maintenance free", but it still requires a certain amount of attention to prolong its useful life. To obtain the greatest capacity and longevity from the battery, the following practices are recommended:

 Do not allow the battery to completely discharge. (Discharging the battery to the point where the LOW BATTERY indicator illuminates will not damage the battery. Allowing the battery to remain discharged for long periods of time can degrade the storage capacity of the battery.) When not in use, continually charge the battery by keeping the 12 Vdc line power converter plugged in and connected to the flow meter. The HTTP battery management circuitry will not allow the battery to become "over-charged".

NOTE: The HTTP will automatically enter a low power consumption mode approximately 1-1/2 minutes after the LOW BATTERY indicator illuminates. This circuit prevents excessive discharge of the internal battery.

- If the HTTP is stored for prolonged periods of time, monthly charging is recommended.
- If the HTTP is stored for prolonged periods of time, store at a temperature below 70 °F (21 °C).

Use wiring practices that conform to local codes (National Electric Code Handbook in the USA). Use only the power converters that have been supplied with the HTTP flow meter. The ground terminal, if present on the converter, is mandatory for safe operation.

CAUTION: Any other wiring method may be unsafe or cause improper operation of the instrument.

It is recommended not to run line power with other signal wires within the same wiring tray or conduit.

NOTE: This instrument requires clean electrical line power. Do not operate this unit on circuits with noisy components (i.e. Fluorescent lights, relays, compressors, variable frequency drives, etc.).

The HTTP can be operated from a 11-15 Vdc source, using the included auto-style power cord, as long as it is capable of supplying at least 3 Watts—observe proper polarity.

General Information Regarding Input/ Output: ISO-MODs

Standard 4-20 mA Output

Figure 1.5

The HTTP flow meter may contain two *Isolated Input/ output Modules* (ISO-MODs); one located inside of the flow meter enclosure and one that is user accessible, located under the access door on the keyboard. The standard configuration of these modules is to have the internal module configured as an actively powered 4-20 mA module and the optional user accessible one as a data logger.

ISO-MODs are epoxy encapsulated electronic input/output modules that are simple to install and replace in the field. All modules are 2,500 volt optically isolated from HTTP power and Earth grounds -- eliminating the potential for ground loops and reducing the chance of severe damage in the event of an electrical surge.

The standard 4-20 mA output may be replaced with one of the following four ISO-MODs: dual-relay, rate pulse, RS232C, and RS485. HTTP supports one ISO-MOD input/output module in addition to the optional data logger. All modules are field configurable by utilizing the keyboard or **ULTRALINKTM** interface. Field wiring connections to ISO-MODs are quick and easy using pluggable terminals.

The 4-20 mA Output Module interfaces with virtually all recording and logging systems by transmitting an analog current signal that is proportional to system flow rate. Independent 4 mA and 20 mA span settings are established in software using the FL 4MA and FL 20MA settings in the OUTPUT2 configuration menu. These entries can be set anywhere in the –40 to +40 fps (-12 to +12 mps) measuring range of the instrument. Output resolution of the module is 12-bits (4,096 discrete points). The module can drive more than 800 Ohms of load with its internally generated 24 volt power source.

A 4-20 mA output interface cable has been included with the HTTP package. Connect the 1/4-turn BNC connection to the jack located on the side of the flow meter. **See Figure 1.5**. The red clip on the cable provides the positive leg of the output and the black clip provides the negative side. Verify that the sum of the resistances in the loop do

not exceed 800 Ohms. The HTTP output is configured to source current.

Refer to Section 3 of this manual for detailed information regarding the configuration, calibration and testing of the 4-20 mA output.

A 200,000-point Data Logger* is located within the weather-tight pocket on the face plate of the flow meter. See **Figure 1.6**. Loosen the three thumbscrews located in the corners of the pocket cover and rotate the cover to expose the Data Logger module. The logger stores time-stamped, high resolution (16-bit) data at user selected intervals ranging from 1 to 30,000 (8.33 hours) seconds. Configuration of and data retrieval from the logger can be accomplished in one of two ways:

- The module is removable. The module can be carried in a shirt pocket back to the office and plugged into a PC serial port via the module's integral DB9 connector.
- Via the *Data Logger* software utility and the serial DB9 interface cable included with the logger. Data can be accessed by connecting the cable to the logger, which is located in the pocket on the front faceplate of the instrument. See **Figure 1.6**.

Refer to Section 3 of this manual for detailed information regarding the configuration and operation of the Data Logger Module.

*The 200,000 points can be divided into 16 unique files that each may contain up to 30,000 events.

There are four additional optional ISO-Mods available in replacement of the standard 4-20 mA output. If interested in one of these optional ISO-Mods, please contact Hedland sales at 800-433-5263 or 262-639-6770 for detailed information.

Other *Optional* ISO-Mods

General

The transducers that are utilized by the Series HTTP contain piezoelectric crystals for transmitting and receiving ultrasound signals through walls of liquid piping systems. The transducers are relatively simple and straight-forward to install, but spacing and alignment of the transducers is critical to the system's accuracy and performance. Extra care should be taken to ensure that these instructions are carefully executed.

Mounting of the clamp-on ultrasonic transit time transducers is comprised of three steps:

- 1. Selection of the optimum location on a piping system.
- 2. Entering the pipe and liquid parameters into either the software utility (*UltraLink*[™]) or keying the parameters into the HTTP keypad. The software embedded in *UltraLink*[™] and HTTP will calculate proper transducer spacing based on these entries.
- 3. Pipe preparation and transducer mounting.

1. Mounting Location

The first step in the installation process is the selection of an optimum location for the flow measurement to be made. For this to be done effectively, a basic knowledge of the piping system and its plumbing are required.

An optimum location would be defined as a piping system that is completely full of liquid when measurements are being taken and has lengths of straight pipe such as those described in **Table 2.1**. The optimum straight pipe diameter recommendations apply to pipes in both horizontal and vertical orientation.

Piping Configuration	Upstream Pipe Diameters	Downstream Pipe Diameters
	*	**
	24	4
	14	3
	9	3
	8	3
	8	3
	24	4
Table 2.1 ¹		

¹ The HTTP system will provide <u>repeatable</u> measurements on piping systems that do not meet these requirements, but the <u>accuracy</u> of these readings may be influenced to various degrees.

2. Transducer Spacing

HTTP transit time flow meters utilize two transducers that function as both ultrasonic transmitters and The transducers are clamped on the receivers. outside of a closed pipe at a specific distance from each other. The transducers can be mounted in Vmode where the sound transverses the pipe two times. W-mode where the sound transverses the pipe four times, or in Z-mode where the transducers are mounted on opposite sides of the pipe and the sound crosses the pipe once. For further details, reference pictures located under Table 2.2. The appropriate mounting configuration is based on pipe and liquid characteristics. Selection of the proper transducer mounting method is not entirely predictable and many times is an iterative process. Table 2.2 contains recommended mounting configurations for common applications. These recommended configurations may need to be modified for specific applications if such things as aeration, suspended solids or poor piping conditions are present. W-mode provides the longest sound path length between the transducers-but the weakest signal strength. Z-mode provides the strongest signal strength-but has the shortest sound path length. On pipes smaller than 3 inches (75 mm), it is desirable to have a longer sound path length, so that the differential time can be measured more accurately. Use of the HTTP diagnostics in determining the optimum transducer mounting is covered later in this section.

IMPORTANT: Since the time interval being measured is influenced by the transducer spacing, it is critical that the transducer spacing be measured on the pipe accurately to assure optimum performance from the HTTP system.

Transducer Mount Mode	Pipe Material	Pipe Size	Liquid Composition
W-Mode	Plastic (all types) Carbon Steel Stainless Steel Copper Ductile Iron Cast Iron	1-6 in. (25-150 mm) 1-4 in. (25-100 mm) 1-6 in. (25-150 mm) 1-6 in. (25-150 mm) Not recommended Not recommended	Low TSS; non-aerated Low TSS; non-aerated Low TSS; non-aerated Low TSS; non-aerated
V-Mode	Plastic (all types)	6-30 in. (150-750 mm)	Low TSS; non-aerated
	Carbon Steel	4-24 in. (100-600 mm)	Low TSS; non-aerated
	Stainless Steel	6-30 in. (150-750 mm)	Low TSS; non-aerated
	Copper	6-30 in. (150-750 mm)	Low TSS; non-aerated
	Ductile Iron	3-12 in. (75-300 mm)	Low TSS; non-aerated
	Cast Iron	3-12 in. (75-300 mm)	Low TSS; non-aerated
Z-Mode	Plastic (all types)	> 30 in. (> 750 mm)	Low TSS; non-aerated
	Carbon Steel	> 24 in. (> 600 mm)	Low TSS; non-aerated
	Stainless Steel	> 30 in. (> 750 mm)	Low TSS; non-aerated
	Copper	> 30 in. (> 750 mm)	Low TSS; non-aerated
	Ductile Iron	> 12 in. (> 300 mm)	Low TSS; non-aerated
	Cast Iron	> 12 in. (> 300 mm)	Low TSS; non-aerated

Table 2.2Transducer Mounting Modes

TSS = Total Suspended Solids

Entering the Pipe and Liquid Data

The HTTP system calculates proper transducer spacing by utilizing piping and liquid information entered by the user. This information can be entered via the keypad or the *UltraLink*TM Windows software utility and a laptop computer.

In addition, the following information is required before mounting the transducers on the pipe. Note that much of the data relating to material, sound speed, viscosity and specific gravity are preprogrammed into the meter. This data only needs to be modified if it is known that a particular liquid data varies from the reference value.

- 1. Transducer mounting configuration (Table 2.2)
- 2. Pipe O.D. (Outside Diameter)
- 3. Pipe wall thickness
- 4. Pipe material
- 5. Pipe sound speed¹
- 6. Pipe relative roughness¹
- 7. Pipe liner thickness (if present)
- 8. Pipe liner material (if present)
- 9. Fluid type
- 10. Fluid sound speed¹
- 11. Fluid viscosity¹
- 12. Fluid specific gravity¹

¹ Nominal values for these parameters are included within the HTTP operating system. The nominal values may be used as they appear or may be modified if exact system values are known.

After entering the data listed above, the HTTP will calculate proper transducer spacing for the particular data set. This distance will be in inches if the HTTP is configured in English units, or millimeters if configured in metric units.

Keypad Entry

The HTTP contains a tactile feedback keypad interface that allows the user to configure parameters used by the HTTP operating system.

Graphics Display Configuration

The following "Soft Key" menu items will be displayed immediately above the two keys located in the lower corners of the Graphics Display.

- 1. The (soft)MENU key is pressed from RUN mode to enter PROGRAM mode. The (soft)EXIT key is pressed in PROGRAM mode to exit configuration parameters and menus. If any configuration changes are made, the user will be prompted with a SAVE? (soft)YES or (soft)NO when returning to RUN mode. If no changes are made, the user will not be prompted to SAVE.
- 2. The UP/DOWN ARROW keys are used to scroll through menus and configuration parameters. The ARROW keys can also be used to adjust parameter numerical values. In RUN mode the UP/ DOWN ARROW keys are used to adjust the display contrast level.
- 3. The Numerical Keypad is used for entering numerical values.
- 4. The (soft)EDIT key is used to
 - access the configuration parameters in the various menus.
 - initiate changes in configuration parameters.

	5. The (soft)ACCEPT key is used to
	 accept configuration parameter changes.
	6. The (soft)SELECT key is used to
	 configure the engineering units on the graphics display. Press the (soft)SELECT key from RUN mode to highlight the engineering unit presently being displayed on the graphics display (pressing the SELECT key multiple times will toggle the highlighted unit from line to line). Use the UP/DOWN ARROW keys to select display units of:
	 RATE TOTALizer VELocity SIGNAL STRength
	From Menu 7, Display Menu, the number of graphics display lines can be toggled between two and four lines.
UNITS Entry	Menu 1, the BASIC menu contains all of the configuration parameters necessary to make the transducer spacing calculation.
	UNITS
	ENGLSH METRIC
	Installs a global measurement standard into the operation of the instrument. The choices are either English or Metric measurements.
	 Select ENGLSH if all configurations (pipe sizes, etc.) are to be made in inches. Select METRIC if the meter is to be configured in millimeters.
	 The ENGLSH/METRIC selection will also configure the HTTP to display sound speeds in pipe materials and liquids as either feet per second or meters per second

respectively.

Transducer Mount Configuration	XDCR MNT Transducer Mounting Method Selects the mounting orientation for the transducers. The selection of an appropriate mounting orientation is based on pipe and liquid characteristics. Refer to Table 2.2 in this manual.	
	V Mount. A reflective type (transducers mounted on one side of the pipe) of installation used primarily on pipe sizes in the 3-10 inch (75-250 mm) internal diameter range.	
	W Mount. A reflective type (transducers mounted on one side of the pipe) of installation used primarily on pipe sizes in the 2-3 inch (50-75 mm) internal diameter range.	
	Z Mount. A direct type (transducers mounted on opposite sides of the pipe) of installation used primarily on pipe sizes in the 10-100 inch (250-2540 mm) internal diameter range.	
Pipe O.D. Entry	PIPE OD Pipe Outside Diameter Entry ENGLSH (Inches) METRIC (Millimeters)	
	Enter the pipe <u>outside diameter</u> in inches if ENGLSH was selected as UNITS; in millimeters if METRIC was selected.	
Pipe Wall Entry	PIPE WT Pipe Wall Thickness Entry ENGLSH (Inches) METRIC (Millimeters)	
	Enter the pipe <u>wall thickness</u> in inches if ENGLSH was selected as UNITS; in millimeters if METRIC was selected.	

Pipe Material Entry	PIPE MAT Pipe Material Selection CARBON S - Carbon Steel STAINLES - Stainless Steel CAST IRO - Cast Iron DUCTILE - Ductile Iron COPPER - Copper PVC - Polyvinylchloride PVDF LOW - Low Density Polyvinylidene Flouride PVDF HI - High Density Polyvinylidene Flouride ALUMINUM - Aluminum ASBESTOS - Asbestos Cement FIBERGLA - Fiberglass OTHER
	This list is provided as an example. Additional materials are being added continuously. Select the appropriate pipe material from the list or select OTHER if the material is not listed.
Pipe Sound Speed Entry	PIPE SS Speed of Sound in the Pipe Material ENGLSH (Feet per Second) METRIC (Meters per Second)
	Allows adjustments to be made to the speed of sound in the pipe wall. If the UNITS value was set to ENGLSH, the entry is in FPS (feet per second). METRIC entries are made in MPS (meters per second).
	If a pipe material was chosen from the PIPE MAT list, a nominal value for speed of sound in that material will be automatically loaded. If the actual sound speed rate is known for the application piping system and that value varies from the automatically loaded value, the value can be revised.
	If OTHER was chosen as PIPE MAT, a PIPE SS will need to be entered.

Pipe Roughness Entrv	PIPE R Pipe Material Relative Roughness UNITLESS VALUE	
	The HTTP provides Reynolds Number compensation in its flow measurement calculation. The ratio of average surface imperfection as it relates to the pipe internal diameter is used in this compensation.	
	Linear RMS measurement of the pipe PIPE R = <u>internal wall surface</u> Internal Diameter of the pipe	
	If a pipe material was chosen from the PIPE MAT list, a nominal value relative roughness in that material will be automatically loaded. If the actual roughness is known for the application piping system and that value varies from the automatically loaded value, the value can be revised.	
	If OTHER was chosen as PIPE MAT, a PIPE R may need to be entered.	
Liner Thickness Entry	LINER T Pipe Liner Thickness Entry ENGLSH (Inches) METRIC (Millimeters)	
	Enter the pipe <u>liner thickness</u> . Enter this value in inches if ENGLSH was selected as UNITS; in millimeters if METRIC was selected.	
Liner Material Entry	[If a LINER Thickness was selected] LINER MAT - Liner Material TAR EPOXY RUBBER MORTAR POLYPROPYLENE POLYSTYROL POLYSTYRENE POLYESTER POLYETHYLENE EBONITE TEFLON Other	

	This list is provided as an example. Additional materials are being added continuously. Select the appropriate material from the list or select OTHER if the liner material is not listed.					
Liner Sound Speed Entry	LINER SS Speed of Sound in the Liner ENGLSH (Feet per Second) METRIC (Meters per Second)					
	Allows adjustments to be made to the speed of sound in the liner. If the UNITS value was set to ENGLSH, the entry is in FPS (feet per second). METRIC entries are made in MPS (meters per second). If a liner was chosen from the LINER MAT list, a nominal value for speed of sound in that media will be automatically loaded. If the actual sound speed rate is known for the pipe liner and that value varies from the automatically loaded value, the value can be revised.					
Fluid Type Entry	FL TYPE - Fluid/Media Type TAP WATER SEWAGE-RAW ALCOHOL SEA WATER KEROSENE GASOLINE FUEL OIL CRUDE OI PROPANE BUTANE OTHER					
	This list is provided as an example. Additional liquids are being added continuously. Select the appropriate liquid from the list or select OTHER if the liquid is not listed.					
Fluid Sound Speed Entry	FLUID SS Speed of Sound in the Fluid ENGLSH (Feet per Second) METRIC (Meters per Second)					

	Allows adjustments to be made to the speed of sound in the liquid. If the UNITS value was set to ENGLSH, the entry is in FPS (feet per second). METRIC entries are made in MPS (meters per second). If a fluid was chosen from the FL TYPE list, a nominal value for speed of sound in that media will be automatically loaded. If the actual sound speed rate is known for the application fluid and that value varies from the automatically loaded value, the value can be revised.						
	If OTHER was chosen as FL TYPE, a FLUID SS will need to be entered. A list of alternate fluids and their associated sound speeds are located in the Appendix located at the back of this manual.						
Fluid Viscosity Entry	FLUID VI Absolute Viscosity of the Fluid cps						
	Allows adjustments to be made to the absolute viscosity of the liquid. If a fluid was chosen from the FL TYPE list, a nominal value for viscosity in that media will be automatically loaded. If the actual viscosity is known for the application fluid and that value varies from the automatically loaded value, the value can be revised.						
	If OTHER was chosen as FL TYPE, a FLUID VI will need to be entered. A list of alternate fluids and their associated viscosities are located in the Appendix located at the back of this manual.						
Fluid Specific Gravity Entry	SP GRVTY Fluid Specific Gravity Entry unitless						
	Allows adjustments to be made to the specific gravity (density) of the liquid. If a fluid was chosen from the FL TYPE list, a nominal value for specific gravity in that media will be automatically loaded. If the actual specific gravity is known for the application fluid and that value varies from the automatically loaded value, the value can be revised.						

A list of alternate fluids and their associated specific gravities are located in the Appendix located at the back of this manual.

XDCR SPAC -- Transducer Spacing Calculation

ENGLSH (Inches) METRIC (Millimeters)

This value represents the one-dimensional linear measurement between the transducers (the upstream/ downstream measurement that runs parallel to the pipe). This value is in inches if ENGLSH was selected as UNITS, in millimeters if METRIC was selected. This measurement is taken from the line which is scribed into the side of the transducer block.

IMPORTANT: Pipe sizes under 2 inches (50 mm) require optional transducers and a modified HTTP system that can be purchased separately. See Page 2.22 for additional details or consult the Hedland factory for information.

UltraLink[™] Entry

Transducer Spacing

Calculation

UltraLink[™] Data Entry

The *UltraLink*TM Windows[®]-based software utility provides an efficient means for entering piping and liquid parameters through the use of pop-up window/ pull-down menu structures. Data can be entered into *UltraLink*TM, stored, later retrieved and downloaded at the HTTP installation site (provided that *UltraLink*TM and HTTP communications are not enabled at the time of data entry) or it can be downloaded immediately to the HTTP meter (provided that *UltraLink*TM and HTTP communications are enabled during data entry).

To install $UltraLink^{\text{TM}}$ and establish communications with a PC, please follow the instructions enclosed with the $UltraLink^{\text{TM}}$ software package or in the Appendix of this manual.

The system information required for entry into the *UltraLink*[™] package is identical to that required for Keypad Entry covered in the previous section. See pages 2.3-2.5.

After initializing *UltraLink*[™], click on the button labeled **Config**. The window shown in Figure 2.1 will appear. Enter the pipe and liquid parameters into the appropriate data fields in the **Basic** window. The correct transducer spacing will appear in the **Transducer - Spacing** data field.

Dev Dev	ice 127 -						_ 🗆 >	<	
System	Lonfigur	ation				_	_	1	
Basic	Flow	Advanced Uutput	Security	Hardware					
	Units:	English	•	General					Transducer
_	01110	English		Transduser					spacing
	Туре:	Std Clamp-on	•	Mount	•	Spacing:			appears here.
-				Pipe					
	Material:	CARBON STEEL	•	SoundSpeed: 10597.13	3 FPS	Roughness:	0.00		
				Pipe OD: 0	in	Wall Thickness:	0 in		
				Liner					
	Material:	TAR EPOXY	•	SoundSpeed: 6562.00	FPS	Roughness:	0.00		
_				Thickness: 0 Eluid	in				
	Туре:	WATER	•	SoundSpeed: 4863.33	FPS	Abs. Viscosity:	1.13 cp		
						Spec. Gravity:	1.00		
File O	pen	File Save				Download Ca	ancel H	lel	
For Help	, press F1					13:26:37 COM	M: ERROR	//.	

Figure 2.1 *UltraLink*[™] Windows[®]-based software utility configuration screen.

After all data fields have been entered, **Download** to the HTTP or **File Save** to a disk by clicking on the appropriate button in the **Config** window. **Download** is not possible unless communications are enabled between the HTTP and *UltraLink*TM. Communications are enabled when a green OK is indicated in the lower right-hand **COMM**: status box. If communications are not enabled, please review the documentation that details the installation and initialization of *UltraLink*TM. Refer to Part 4, page 4.1.

After selecting an optimal mounting location, Step 1, and successfully determining the proper transducer spacing, Step 2, the transducers can now be mounted onto the pipe.

3. Transducer Mounting

The HTT transducers need to be properly oriented on the pipe to provide optimum reliability and performance. On horizontal pipes, the transducers should be mounted 180 radial degrees from one another and at least 45 degrees from the top-deadcenter and bottom-dead-center of the pipe. See **Figure 2.2**. Figure 2.2 does not apply to vertically oriented pipes.

Figure 2.2 Horizontal pipe transducer mounting

Pipe Preparation

V-Mount and Wmount Transducer Installation Before the transducers are bonded to the pipe surface, two areas slightly larger than the flat surface of the transducer heads must be cleaned of all rust, scale and moisture. For pipes with rough surfaces, such as ductile iron pipe, it is recommended that the pipe surface be ground flat. Paint and other coatings, if not flaked or bubbled, need not be removed. Plastic pipes typically do not require surface preparation other than soap and water cleaning.

Transducer Mounting - V-mount and W-mount

1. Place a single bead of couplant, approximately 0.50 inch (12mm) thick, on the flat face of the transducer (**Figure 2.3**). Generally, a silicone-based grease is used as an acoustic couplant, but any grease-like substance that is rated not to "flow" at the temperature that the pipe may operate at, will be acceptable.

Figure 2.3 Transducer Couplant Application

- 2. Place the upstream transducer in position and secure with a mounting strap. The strap should be place in the arched groove on the end of the transducer. A screw is provided to help hold the transducer onto the strap. Verify that the transducer is true to the pipe adjust as necessary. Tighten strap securely.
- 3. Place the downstream transducer on pipe at the calculated transducer spacing. See **Figure 2.4**. Using firm hand pressure, slowly move the transducer towards and away from the upstream transducer while observing Signal Strength. Clamp the transducer at the position where the highest Signal Strength is observed. A Signal Strength between 3.0 and 95.0 percent is acceptable.

Z-Mount Transducer Installation

HTT Mounting in Z-Mount Configuration

Installation on larger pipes requires careful measurements to linear and radial placement of transducers. Failure to properly orient and place transducers on pipe may lead to weak signal strength and/or inaccurate readings. The section below details a method for properly locating transducers on larger pipes. It requires a roll of paper (i.e. freezer or wrapping paper), masking tape and a marking device.

1. Wrap paper around pipe as shown in **Figure 2.6**. Align the paper ends to within 0.25 inches (6mm).

Figure 2.6 Paper Template Alignment

- 2. Mark the intersection of the two ends of paper to indicate the circumference. Remove the template and spread it out on a flat surface. Fold template in half, bisecting the circumference. See **Figure 2.7**.
- 3. Crease the paper at the fold line. Mark the crease. Place a mark on the pipe where one of the transducers will be located. See **Figure 2.2** for acceptable radial orientations. Wrap the template back around the pipe, placing the beginning of the paper and corner in the location of the mark. Move to the other side of the pipe and mark the ends of the crease. Measure from the end of the crease (directly across the pipe from the first transducer

location) the dimension derived in Step 2, Transducer Spacing. Mark this location on the pipe.

Figure 2.7 Bisecting the pipe circumference

4. The two marks on the pipe are now properly aligned and measured.

If access to the bottom of the pipe prohibits the wrapping of the paper around the circumference, cut a piece of paper to these dimensions and lay it over the top of the pipe.

Length = Pipe O.D. x 1.57

Width = Spacing determined on 2.12 or 2.14

Mark opposite corners of the paper on the pipe. Apply transducers to these two marks.

5. Place a single bead of couplant, approximately 0.50 inch (12 mm) thick, on the flat face of the transducer. See **Figure 2.3**. Generally, a silicone-based grease is used as an acoustic couplant, but any grease-like substance that is rated not to "flow" at the temperature that the pipe may operate at, will be acceptable.

- 6. Place the upstream transducer in position and secure with a stainless steel strap. Straps should be placed in the arched groove on the end of the transducer. A screw is provided to help hold the transducer onto the strap. Verify that the transducer is true to the pipe—adjust as necessary. Tighten transducer strap securely. Larger pipes may require more than one strap to reach the circumference of the pipe.
- 7. Place the downstream transducer on the pipe at the calculated transducer spacing. See **Figure 2.8**. Using firm hand pressure, slowly move the transducer both towards and away from the upstream transducer while observing Signal Strength. Clamp the transducer at the position where the highest Signal Strength is observed. Signal Strength of between 5 and 95 percent is acceptable. On certain pipes, a slight twist to the transducer may cause signal strength to rise to acceptable levels.

Figure 2.8 Z-Mode Transducer Placement

8. Certain pipe and liquid characteristics may cause Signal Strength to rise to greater than 95%. The problem with operating a HTT with very high Signal Strength is that the signals may saturate the input amplifiers and cause erratic readings. To decrease the Signal Strength one transducer can

Mounting Track Installation

be offset radially, as illustrated in **Figure 2.5**, or a V-Mode mounting method may be chosen.

9. Secure the transducer with a stainless steel strap.

Transducer Mounting - Mounting Track

- 1. The transducer mounting track is used for pipes that have outside diameters between 2 and 10 inches (50-250mm). If the pipe is outside of that range, then select a standard V-mode or W-mode mounting method.
- 2. Install the mounting rail on the side of the pipe with the stainless steel bands provided. Do not mount on the top or bottom of the pipe. Orientation on vertical pipe is not critical. Ensure that the track is parallel to the pipe and that all four mounting feet are touching the pipe.
- 3. Slide the two transducer clamps towards the center, 5 inch (125 mm) mark, on the mounting rail.
- 4. Place a single bead of couplant, approximately 0.25 inch (6 mm) thick, on the flat face of the transducer. See **Figure 2.3**.
- 5. Place the first transducer in between the mounting rails near the zero point on the mounting rail scale. Slide clamp over the transducer. Adjust the clamp/ transducer so the notch in the clamp aligns with zero on the scale. See **Figure 2.9**.

Figure 2.9 Transducer Space Measurement
PART 2 - TRANSDUCER POSITIONING

- 6. Secure with the thumb screw. Ensure that the screw rests in the counter bore on the top of the transducer. (Excessive pressure is not required. Apply just enough pressure so that the couplant fills the gap between the pipe and transducer.)
- 7. Place the second transducer in between the mounting rails near the dimension derived in the Transducer Spacing section. Read the dimension on the mounting rail scale. Slide the transducer clamp over the transducer and secure with the thumb screw.

Transducer Mounting - HTTS Small pipe

Important note for pipe sizes under 2 inches (50 mm). If the transducer spacing that is calculated is lower than 2.65 inches (67 mm), a set of HTTS small pipe transducers are required. Please contact the Hedland factory or sales representative for information regarding the HTTS small pipe transducer.

The small pipe transducers offered by Hedland are designed for specific pipe outside diameters. Do not attempt to mount a HTTS transducer onto a pipe that is either too large or too small for the transducer contact the Hedland factory to arrange for a replacement transducer that is the correct size.

HTTS installation consists of the following steps:

- 1. Apply a thin coating of silicone grease to both halves of the transducer housing where the housing will contact the pipe. See **Figure 2.10**.
- 2. On horizontal pipes, mount the transducer in an orientation such that the cable exits at $\pm 45^{\circ}$ from the side of the pipe. Do not mount with the cable exiting on either the top or bottom of the pipe. On vertical pipes the orientation does not matter.
- 3. Tighten the wing nuts so that the grease begins to flow out from the edges of the transducer and from

PART 2 - TRANSDUCER POSITIONING

the gap between the transducer halves. Do not over tighten.

- 4. If Signal Strength is less than 5%, remount the transducer at another location on the piping system.
- 5. If Signal Strength is greater than 95%, contact the Hedland factory to obtain a lower power Strategy to load into the HTT flow meter.

Figure 2.10 Application of Grease HTTS Transducer

PART 3 - STARTUP AND CONFIGURATION

Before Starting the Instrument	Note: <u>The HTTP flow meter system requires a full</u> <u>pipe of liquid before a successful startup can be</u> <u>completed.</u> Do not attempt to make adjustments or change configurations until a full pipe is verified.
	Note: If Dow 111 silicone grease was utilized as a couplant, a curing time is not required. However, if Dow 732 or another permanent RTV was used, the adhesive must fully cure before power is applied to the instrument.
	Procedure:
Instrument Startup	 Verify that all wiring is properly connected and routed as described previously in this manual.
	2. Verify that the transducers are properly mounted as described in Part 2 of this manual.
	3. Press the ON button on the flow meter keypad. The HTTP display backlighting will illuminate and the software version number will appear on the display.
	The display backlighting illuminates for approximately 20 seconds and automatically extinguishes to preserve battery power. To re-illuminate the display, press any key on the keyboard. Adjustments to the backlighting duration can be made in the Display Menu. Refer to page 3.29 for details.
	 Confirm that Signal Strength is greater than 2%. If it is not, verify that proper transducer mounting methods and liquid/pipe characteristics have been entered. <u>The pipe must be full of liquid in order to make this measurement.</u>
	5. Once the meter is properly operating (proper signal strength has been achieved), refer to the later portions of this manual section for additional programming features.

General	After an installation of the transducers and connection of appropriate power supplies to the HTTP, keypad configuration of the instrument can be undertaken. All entries are saved in non-volatile FLASH memory and will be retained in the event of power loss.
	The HTTP can be configured through the keypad interface or by using the <i>UltraLink</i> ^{m} Windows [®] software utility. Of the two methods of configuration, the <i>UltraLink</i> ^{m} software utility provides more advanced features and offers the abilility to store and transfer meter configurations between HTTP meters.
Keypad Operation	The following "Soft Key" menu items will be displayed immediately above the two keys located in the lower corners of the Graphics Display. See Figure 3.1 .
	Graphics Display SIG 5TR Soft Keys Arrow Keys 3 4 5 Infrared Communications Port Figure 3.1
	1. The MENU key is pressed from RUN mode to enter PROGRAM mode. The EXIT key is pressed in PROGRAM mode to exit configuration parameters and menus. If changes to any configuration parameters have been made, the user will be prompted with a SAVE? YES or NO when returning to RUN mode. If no changes have been made, the user will not be prompted to SAVE.
	2. The UP/DOWN ARROW keys are used to scroll through menus and configuration parameters.

Display Contrast

Graphics Display Configuration

The ARROW keys can also be used to adjust parameter numerical values or to adjust the display contrast level in RUN mode.

- 3. The Numerical Keypad is used for entering numerical values.
- 4. The ACCEPT key is used to
 - accept configuration parameter changes.
- 5. The SELECT key is used to
 - configure the engineering units on the graphics display. Press the SELECT key from RUN mode to highlight the engineering unit presently being displayed on the graphics display (pressing the SELECT key multiple times will toggle the highlighted unit from line to line). Use the UP/DOWN ARROW keys to select display units of
 - N Total (Net Totalizer)
 - + Total (Positive Totalizer)
 - - Total (Negative Totalizer)
 - Rate
 - Sound Speed FPS
 - Sound Speed MPS
 - SIGNAL STR.
 - Temp 1
 - Temp 2
 - Temp DIFF

From Menu 8, Display Menu, the number of graphics display lines can be toggled between two and four lines.

- access the configuration parameters in the various menus.
- initiate changes in configuration parameters.

Menu Structure

The eight menus used in the structure of the HTTP are as follows:

- 1. **BSC MENU** -- BASIC operations menu. Contains all of the configuration parameters necessary to program the meter to measure flow.
- 2. **Datalog operation** -- Configures the data logging location, logger interval and logging duration.
- 3. **Datalog maintenance** -- Existing data logger files can be erased from the logger.
- 4. **OUT2 MEN** -- Configures the type and operating parameters of the 4-20 mA or other ISO-MOD located internally in the HTTP flow meter.
- 5. **SEN MENU** -- Selects the transducer type (i.e. HTTN, HTTH, etc.).
- 6. **SEC MENU** -- Resets totalizers, resets the operating system and revises security passwords.
- 7. **SER MENU** -- SERVICE MENU contains system measurements that are used by service personnel for troubleshooting.
- 8. DSP MENU -- Configures meter display functions.

The following sections define the configuration parameters located in each of the menus.

1. BSC MENU -- BASIC MENU

The BASIC menu contains all of the configuration parameters necessary to make the HTTP operational.

UNITS

ENGLSH METRIC

Installs a global measurement standard into the operation of the instrument. The choices are either English or Metric measurements.

UNITS Selection

	 Select ENGLSH if all configurations (pipe sizes, etc.) are to be made in inches. Select METRIC if the meter is to be configured in millimeters. The ENGLSH/METRIC selection will also configure the HTTP to display sound speeds in pipe materials and liquids as either feet per second or meters per second, respectively.
	NOTE: If the UNITS entry has been changed from ENGLSH to METRIC or from METRIC to ENGLSH, the entry must be saved and the instrument reset (power cycled or System Reset entered) in order for the HTT to initiate the change in operating units. Fail- ure to save and reset the instrument will lead to improper transducer spacing calculations and an in- strument that may not measure properly.
Transducer Mount	XDCR MNT Transducer Mounting Method V W Z
	Selects the mounting orientation for the transducers. The selection of an appropriate mounting orientation is based on pipe and liquid characteristics. See PART 2 - Transducer Installation in this manual.
Pipe Diameter	PIPE OD Pipe Outside Diameter Entry ENGLSH (Inches) METRIC (Millimeters)
	Enter the pipe <u>outside diameter</u> in inches if ENGLSH was selected as UNITS; in millimeters if METRIC was selected.
	NOTE: Charts listing popular pipe sizes have been included in the Appendix of this manual. Correct entries for pipe O.D. and pipe wall thickness are critical to obtaining accurate flow measurement readings.

Pipe Wall Thickness	PIPE WT Pipe Wall Thickness Entry ENGLSH (Inches) METRIC (Millimeters)
	Enter the pipe <u>wall thickness</u> in inches if ENGLSH was selected as UNITS; in millimeters if METRIC was selected.
Pipe Material	PIPE MAT Pipe Material Selection CARBON S - Carbon Steel STAINLES - Stainless Steel CAST IRO - Cast Iron DUCTILE - Ductile Iron COPPER - Copper PVC - Polyvinylchloride PVDF LOW - Low Density Polyvinylidene Flouride PVDF HI - High Density Polyvinylidene Flouride ALUMINUM - Aluminum FIBERGLA - Fiberglass OTHER
	This list is provided as an example. Additional pipe materials are being added continuously. Select the appropriate pipe material from the list or select OTHER if the material is not listed.
Pipe Sound Speed	PIPE SS Speed of Sound in the Pipe Material ENGLSH (Feet per Second) METRIC (Meters per Second)
	Allows adjustments to be made to the speed of sound in the pipe wall. If the UNITS value was set to ENGLSH, the entry is in FPS (feet per second). METRIC entries are made in MPS (meters per second).
	If a pipe material was chosen from the PIPE MAT list, a nominal value for speed of sound in that material will be automatically loaded. If the actual sound speed rate is known for the application piping system and

	that value varies from the automatically loaded value, the value can be revised.
	If OTHER was chosen as PIPE MAT, a PIPE SS will need to be entered.
Pipe Roughness	PIPE R Pipe Material Relative Roughness UNITLESS VALUE
	The HTTP provides Reynolds Number compensation in its flow measurement calculation. The ratio of average surface imperfection as it relates to the pipe internal diameter is used in this compensation.
	Linear RMS measurement of the pipePIPE R =internal wall surfaceInternal Diameter of the pipe
	If a pipe material was chosen from the PIPE MAT list, a nominal value relative roughness in that material will be automatically loaded. If the actual roughness is known for the application piping system and that value varies from the automatically loaded value, the value can be revised.
	If OTHER was chosen as PIPE MAT, a PIPE R may need to be entered.
Liner Thickness	LINER T Pipe Liner Thickness Entry ENGLSH (Inches) METRIC (Millimeters)
	Enter the pipe <u>liner thickness</u> . Enter this value in inches if ENGLSH was selected as UNITS; in millimeters if METRIC was selected.

Liner Material	[If a LINER Thickness was selected] LINER MAT - Liner Material TAR EPOXY RUBBER MORTAR POLYPROPYLENE POLYSTYROL POLYSTYRENE POLYESTER POLYESTER POLYETHYLENE EBONITE TEFLON Other
	This list is provided as an example. Additional materials are being added continuously. Select the appropriate material from the list or select OTHER if the liner material is not listed.
Liner Sound Speed	LINER SS Speed of Sound in the Liner ENGLSH (Feet per Second) METRIC (Meters per Second)
	Allows adjustments to be made to the speed of sound in the liner. If the UNITS value was set to ENGLSH, the entry is in FPS (feet per second). METRIC entries are made in MPS (meters per second).
	If a liner was chosen from the LINER MAT list, a nominal value for speed of sound in that media will be automatically loaded. If the actual sound speed rate is known for the pipe liner and that value varies from the automatically loaded value, the value can be revised.

Fluid Type	FL TYPE - Fluid/Media Type TAP WATER SEWAGE-RAW ALCOHOL SEA WATER KEROSENE GASOLINE FUEL OIL CRUDE OIL PROPANE BUTANE OTHER
	liquid from the list or select OTHER if the liquid is not listed.
Fluid Sound Speed	FLUID SS Speed of Sound in the Fluid ENGLSH (Feet per Second) METRIC (Meters per Second)
	Allows adjustments to be made to the speed of sound in the liquid. If the UNITS value was set to ENGLSH, the entry is in FPS (feet per second). METRIC entries are made in MPS (meters per second).
	If a fluid was chosen from the FL TYPE list, a nominal value for speed of sound in that media will be automatically loaded. If the actual sound speed rate is known for the application fluid and that value varies from the automatically loaded value, the value can be revised.
	If OTHER was chosen as FL TYPE, a FLUID SS will need to be entered. A list of alternate fluids and their associated sound speeds are located in the Appendix located at the back of this manual.

Fluid Viscosity	FLUID VI Absolute Viscosity of the Fluid
	Allows adjustments to be made to the absolute viscosity of the liquid. If a fluid was chosen from the FL TYPE list, a nominal value for viscosity in that media will be automatically loaded. If the actual viscosity is known for the application fluid and it varies from the automatically loaded value, the value can be revised.
	If OTHER was chosen as FL TYPE, a FLUID VI will need to be entered. A list of alternate fluids and their associated viscosities are located in the Appendix located at the back of this manual.
Fluid Specific Gravity	SP GRVTY Fluid Specific Gravity Entry unitless
	Allows adjustments to be made to the specific gravity (density) of the liquid. If a fluid was chosen from the FL TYPE list, a nominal value for specific gravity in that media will be automatically loaded. If the actual specific gravity is known for the application fluid and that value varies from the automatically loaded value, the value can be revised.
	If OTHER was chosen as FL TYPE, a SP GRVTY may need to be entered if mass flows are to be calculated. A list of alternate fluids and their associated specific gravities are located in the Appendix located at the back of this manual.
Transducer Spacing	XDCR SPAC Transducer Spacing Calculation ENGLSH (Inches) METRIC (Millimeters)
	This value represents the one-dimensional linear measurement between the transducers (the upstream/ downstream measurement that runs parallel to the

	pipe). This value is in inches if ENGLSH was selected as UNITS; in millimeters if METRIC was selected. This measurement is taken from the line which is scribed into the side of the transducer block.If the transducers are being mounted using the transducer track assembly, a measuring scale is etched into the track. Place one transducer at 0
	inches and the other at the appropriate measurement.
Engineering Units RATE	RATE UNT - Engineering Units for Flow Rate GALLONS - U.S. Gallons LITERS - Metric Liter MGAL - Millions of U.S. Gallons CUBIC FT - Cubic Feet CUBIC ME - Cubic Meters ACRE FT - Acre Feet OIL BARR - Oil Barrels (42 U.S. Gallons) LIQ BARR - Liquor Barrels (31.5 U.S. Gallons) FEET - Linear Feet METERS - Linear Meters
	Select a desired engineering unit for flow rate measurements.
Engineering Units RATE INTERVAL	RATE INT - Time Interval for Flow Rate MIN - Minutes HOUR - Hours DAY - Days SEC - Seconds
	Select a desired engineering unit for flow rate measurements.
Engineering Units TOTALIZER	TOTL UNT - Engineering Units for Flow Totalizer <i>GALLONS -</i> U.S. Gallons <i>LITERS -</i> Metric Liter <i>MGAL -</i> Millions of U.S. Gallons <i>CUBIC FT -</i> Cubic Feet

Engineering Units TOTAL Exponent

CUBIC ME - Cubic Meters ACRE FT - Acre Feet OIL BARR - Oil Barrels (42 U.S. Gallons) LIQ BARR - Liquor Barrels (31.5 U.S. Gallons) FEET - Linear Feet METERS - Linear Meters

Select a desired engineering unit for flow accumulator (totalizer) measurements.

TOTL E - Flow Totalizer Exponent Value *E-1 to E6*

Utilized for setting the flow totalizer exponent. This feature is useful for accommodating a very large accumulated flow. The exponent is a $x10^{n}$ multiplier, where "n" can be from -1 (x0.1) to +6 (x1,000,000). Table 3.1 should be referenced for valid entries and their influence on the HTTP display.

TABLE 3.1—Totalizer Exponent Values

Exponent	Display Multiplier
E-1	x 0.1
E0	x 1 (no multiplier)
E1	x 10
E2	x 100
E3	x 1,000
E4	x 10,000
E5	x 100,000
E6	x 1,000,000

Minimum Flow Rate	MIN RATE - Minimum Flow Rate Settings Rate Unit/Rate Interval
	A minimum volumetric flow rate setting is entered to establish filter software settings. Volumetric entries will be in the Engineering Rate Units and Interval selected on pages 3.10-3.11 of this manual. For uni-directional measurements, set MIN RATE to zero. For bi- directional measurements, set to the highest negative (reverse) flow rate expected in the piping system.
Maximum Flow Rate	MAX RATE - Maximum Flow Rate Settings Rate Unit/Rate Interval
	A maximum volumetric flow rate setting is entered to establish filter software settings. Volumetric entries will be in the Engineering Rate Units and Interval selected on pages 3.10-3.11 of this manual. For uni-directional or bi-directional measurements, set MAX RATE to the highest (positive) flow rate expected in the piping system.
Low Flow Cut-off	FL C-OFF - Low Flow Cut-off Percent of the range between MIN RATE and MAX RATE
	A Low Flow Cut-off entry is provided to allow very low flow rates (that can be present when pumps are off and valves are closed) to be displayed as Zero flow. Typical values that should be entered are between 1.0% and 5.0% of the flow range between MIN RATE and MAX RATE.
System Damping	DAMP PER - System Damping Relative Percent Entry: 0-100%
	Flow Filter Damping establishes a <u>maximum</u> adaptive filter value. Under the stable flow conditions (flow varies less than 10% of reading) this adaptive filter will increase the number of successive flow

readings that are averaged together up to this maximum value. If flow changes outside of the **10%** window, the Flow Filter adapts by decreasing and allows the meter to react faster. Increasing this value tends to provide smoother steady-state flow readings and outputs. If erratic flow conditions are present or expected, more advanced filters are available for use in the *UltraLink*TM software utility. See Part 4 for further information.

2. DATALOG OPERATION MENU

ISO-MOD Data Logger

File Number/Location ID 1-30,000 [16 total location IDs] INTERVAL 1-30,000 seconds DURATION 1-30,000 hours

The Series HTTP has an optional 200,000-point data logger/electronic stripchart recorder. The logger can be configured in a couple of different ways to match user applications. The logger stores time-stamped, high resolution (16-bit) data at user-selected intervals ranging from 1 to 30,000 (8.33 hours) seconds. Configuration and data retrieval from the logger can be accomplished in one of two ways:

- The module is *hot-swappable* -- it can be installed, removed or replaced within the flow meter without disconnecting power. The module can be carried in a pocket and plugged into a PC serial port via the module's integral DB9 connector. This feature eliminates the need for a laptop computer to be at the flow meter site.
- Via the *Data Logger* software utility and the serial DB9 interface cable included with the logger. Data can be accessed by connecting the cable to the logger, which is located in the pocket on the front faceplate of the instrument. See **Figure 3.2.** e

Figure 3.2

	See Section 4 for details regarding operation of the Data Logger and UltraLink ^{TM} software utilities.
Data Logger Configuration	 There are three configuration parameters to enter for data logger operation: FILE NUMBER/LOCATION ID INTERVAL DURATION
File Number or Location	The HTTP and the data logger module can be used to monitor and store data on up to 16 different locations. These locations are identified by the FILE NUMBER/LOCATION ID that is assigned. The data logger will not write over an existing file. Existing data files will need to be uploaded and then erased from the logger before new data can be written into the space. The data logger will stop logging once it has reached 30,000 location IDs. Uploading and storing of files is completed using the <i>Data Logger</i> software utility. See Section 4 of this manual for details regarding the <i>Data Logger</i> and <i>UltraLink</i> [™] utilities.
	(samples) per location. The logger will stop logging once it reaches this point, and a new data file will need to be entered.
Logging Interval	From the OUTPUT 1 menu, adjust the time INTERVAL between readings. INTERVAL values between 1 and 30,000 seconds are acceptable.
	For reference there are:
	60 seconds in 1 minute 300 seconds in 5 minutes 1,800 seconds in 30 minutes 3,600 seconds in 1 hour 30,000 seconds in 8.33 hours

Table 3.2 describes some typical configurations of the INTERVAL and DURATION times with what the expected data samples collected count will be.

Table 3.2						
Example No.	INTERVAL Seconds	Samples Collected				
1	1	21,600				
2	10	25,920				
3	60 (1min)	480 (20 days)	28,800			
4	300 (5 min)	2,016 (12 wks)	24,192			
5	1,800 (30 min)	8,760 (1 yr)	17,520			
6	3,600 (1 hr)	8,760 (1 yr)	8,760			
7	18,000 (5 hr)	26,280 (3 yr)	17,520			

NOTE: There is a maximum of 30,000 location IDs (samples) per location.

If the HTTP is going to be left unattended, logging flow data, for extended periods of time, the DURATION time can be configured to stop logging after the DU-RATION of time has passed. DURATION is configured in hours and values between 1 and 30,000 hours are acceptable.

3. DATALOG MAINTENANCE

Datalog Maintenance permits files to be deleted from the data logger module. The Menu contains three options for deleting files: delete the last file that was generated, delete the first file that was generated or delete all of the files on the logger.

Logging Duration

4. OUTPUT 2 MENU

ISO-MOD 4-20 mA

FL 4MA FL 20MA CAL 4MA CAL 20MA 4-20 TST

Configured via jumper selections for either a passive or active transmission mode, the 4-20 mA Output Module interfaces with virtually all recording and logging systems by transmitting an analog current signal that is proportional to system flow rate. Independent 4 mA and 20 mA span settings are established in software using the Flow Measuring Range entries. These entries can be set anywhere in the –40 to +40 FPS (-12 to +12 MPS) measuring range of the instrument. Output resolution of the module is 12-bits (4096 discrete points) and the module can drive up to 800 Ohms of load with its internal 24V isolated power source.

4-20 mA Span The FL 4MA and FL 20MA entries are used to set the span of the 4-20 mA analog output. These entries are volumetric rate units that are equal to the volumetric units configured as Engineering Rate Units and Engineering Units Time Interval entered on page 3.10.

For example, to span the 4-20 mA output from -100 GPM to +100 GPM, with 12 mA being 0 GPM, set the FL 4MA and FL 20MA inputs as follows:

FL 4MA = -100.0 FL 20MA = 100.0

For example, to span the 4-20 mA output from 0 GPM to +100 GPM, with 12 mA being 50 GPM, set the FL 4MA and FL 20MA inputs as follows:

FL 4MA = 0.0 FL 20MA = 100.0

Standard 4-20 mA

4-20 mA Calibration

The 4-20 mA ISO-MOD is factory calibrated and should not require adjustment unless it is replaced.

The CAL4MA entry allows fine adjustments to be made to the "zero" of the 4-20 mA output. To adjust the 4 mA output, an ammeter or reliable reference connection to the 4-20 mA output must be present.

NOTE: The CAL 4MA and CAL 20MA entries should not be used in an attempt to set the 4-20 mA range. Utilize FL 4MA and FL 20MA, detailed above, for this purpose.

Procedure:

- Disconnect one side of the current loop and connect the ammeter in series (disconnect either wire at the terminals labeled +/- on the ISO-MOD 4-20 mA module).
- 2. Using the arrow keys, increase the numerical value to increase the current in the loop to 4 mA. Decrease the value to decrease the current in the loop to 4 mA. Typical values range between 40-80 counts.

Re-connect the 4-20 mA output circuitry as required.

Calibration of the 20 mA setting is conducted much the same way as the 4 mA adjustments.

Procedure:

- Disconnect one side of the current loop and connect the ammeter in series (disconnect either wire at the terminals labeled +/- on the ISO-MOD 4-20 mA module).
- 2. Using the arrow keys, increase the numerical value to increase the current in the loop to 20 mA. Decrease the value to decrease the current in the loop to 20 mA. Typical values range between 3700-3900 counts.

Re-connect the 4-20 mA output circuitry as required.

4-20 mA Test	4-20 TST - 4-20 mA Output Test <i>4-20</i>
	Allows a simulated value to be output on from the 4-20 mA output. By incrementing this value, the 4-20 mA output will transmit the indicated current value.
<i>Optional</i> Modules	The Series HTTP allows other input/output modules to be used in place of the 4-20 mA output. Please contact the Hedland factory regarding these options:
Ontional	ISO-MOD RATE PULSE
Rate Pulse	FL 0H FL 25KH
	The Rate Pulse Output Module is utilized to transmit information to external counters and PID systems via a frequency output that is proportional to system flow rate. Independent Zero and Span settings are estab- lished in software using the Flow Measuring Range entries. Output resolution of the module is 12-bits (4096 discrete points) and the maximum output fre- quency setting is 2,500Hz. The module has two output modes, turbine meter simulation and "open collector". The turbine meter simulation sources a non-ground referenced saw-tooth waveform with a maximum peak amplitude of approximately 500mVpp. The open- collector output utilizes a 0.21-Ohm FET output that is rated to operate at 100 V and 1 A maximum. If the open-collector output type is utilized, an external volt- age source and limit resistor must be present.
Rate Pulse Span	The FL 0H and FL 25KH entries are used to set the span of the 0-2.5KHz frequency output. These entries are volumetric rate units that are equal to the volumetric units configured as Engineering Rate Units and Engineering Units Time Interval entered on page 3.11.

PART 3 - KEYPAD CONFIGURATION		
	In a bi-directional system, to span the 0-2.5kHz output from -100 GPM to +100 GPM, with 1.25kHz being 0 GPM, set the FL 100H and FL 10KH inputs as follows:	
	FL 0H = 100.0 FL 25KH = 100.0	
	To span the 0-2.5 kHz output from 0 GPM to +100 GPM, with 1.25 kHz being 50 GPM, set the FL 0H and FL 25KH inputs as follows:	
	FL 0H = 0 FL 25KH = 100.0	
Optional	ISO-MOD Dual Relay	
Dual Relay	RELAY 1 AND RELAY 2 NONE TOTALIZE TOT MULT FLOW	
	ON OFF SIG STR ERRORS	
	Two independent SPDT (single-pole, double-throw, Form C) relays are contained in this module. The relay operations are user configured via software to act in either a flow rate alarm, signal strength alarm, error alarm or totalizer/batching mode. The relays are rated for 200 VAC max. and a have current rating of 0.5A resistive load (175 VDC @ 0.25A resistive). It is highly recommended that a secondary relay be utilized whenever the Control Relay ISO-MOD is used to con- trol inductive loads such as solenoids and motors.	
Batch/Totalizer Relay	TOTALIZE mode configures the relay to output a 50 mSec pulse (contact changeover) each time the display totalizer increments—divided by the TOT MULT. The TOT MULT value must be a whole, positive, numerical value.	

Г

Flow Rate Relay	 If the Totalizer Exponent is set to E0 (x1) and the Relay Multiplier is set to 1, then the relay will pulse each time the totalizer increments one count, or each single, whole measurement unit totalized. If the Totalizer Exponent is set to E2 (x100) and the Relay Multiplier is set to 1, then the relay will pulse each time the display totalizer increments or once per 100 measurement units totalized. If the Totalizer Exponent is set to E0 (x1) and the Relay Multiplier is set to 2, the relay will pulse once for every two counts that the totalizer increments. Flow rate relay configuration permits relay changeover at two separate flow rates, allowing operation with an adjustable switch deadband. Figure 3.3 illustrates how the setting of the two set points influences Rate Alarm operation. A single-point flow rate alarm would place the ON> setting slightly higher than the OFF< setting -allowing a switch deadband to be established. If a deadband is not established, switch chatter (rapid switching) may result when flow rate is too close to the switch point.
	Minimum flow Maximum flow Maximum flow Maximum flow Relay OFF Deadband Figure 3.3 Single Point Alarm Operation
Signal Strength Alarm	The SIG STR alarm will provide an indication that the flow meter signals between the transducers have fallen to a point where flow measurements may not be possible. It can also be used to indicate the pipe has

	emptied. Like the Flow Rate alarm described previ- ously, the Signal Strength alarm requires that two points be entered, establishing an alarm deadband. A valid switch point exists when the ON> is a value lower than OFF<. If a deadband is not established and the signal strength decreases to approximately the value of the switch point, the relay may chatter.
Error Alarm Relay	If a relay is set to ERROR mode, the relay will activate when errors occur in the flow meter that has caused the meter to stop measuring reliably. See Appendix for a list of potential error codes.
Ontional	ISO-MOD RS232C
RS232C Module	RS232 MO — MODE HOST UIF RS232 BA — BAUD RATE 1200 2400 9600 19200
	The RS232 Module can be interfaced with serial com- munication ports of PCs, PLCs and SCADA systems. The module runs a proprietary digital protocol, detailed in the Appendix, that is used to monitor flow rate infor- mation in piping systems. The RS232 Module may also be used to form a hardwire connection to a PC that is running the <i>UltraLink</i> [™] software utility. Baud rates up to 19.2 K are supported.

Optional	ISO-MOD RS485
RS485 Module	RS485 MO — MODE SLAVE MASTER RS485 BA — BAUD RATE 1200 2400 9600 19200 ADDRESS — Device Address 1-127
	The RS485 Module allows up to 126 HTTP systems to be daisy-chained on a single three-wire cable network. Communications are via a proprietary digital protocol, detailed in the Appendix. All meters are assigned a unique one byte serial number that allows all of the meters on the cable network to be accessed inde- pendently. Baud rates up to 19.2K and cable lengths to 5,000 feet (1,500 meters) are supported without the need for repeaters.
	Select SLAVE for all of the HTTP meters
	RS485 BA
	Select a Baud rate that is compatible with the operat- ing system.
	ADDRESS
	Each HTTP connected on the communications bus must have a unique address number assigned. Ad- dress 127 is a universal address that will result in all HTTP instruments on the network responding simulta- neously—regardless of address—resulting in CRC er- rors. Only select address location 127 if one meter is on the network.

4. SEN MENU -- SENSOR MENU

	The SEN MENU is utilized to select the type of trans- ducer that will be interfaced with the HTTP meter. Select the appropriate transducer from the list and save the configuration. <u>If the transducer selection is</u> <u>modified, a system reset is required</u> .
	5. SEC MENU SECURITY MENU
	SEC MENU allows users to make password revisions, reset flow totalizer and reset transmitter microprocessor.
Totalizer RESET	TOT RES NO YES
	Select YES to reset flow totalizer/accumulator to Zero.
System RESET	SYS RSET NO YES
	Select YES to initiate a microprocessor reset. All con- figurations and totalizer values will be maintained.
Change Password	CH PSWD? Change the Security Password 0-9999
	By changing the Security Password from 0 to another value (between 1-9999), configuration parameters will not be accessible without first entering that value when prompted. If the value is left at 0, no security is invoked and unauthorized changes could be made.

6. SER MENU -- SERVICE MENU

The SERVICE Menu makes available two different system measurements that are used for troubleshooting and fine tuning of the instrument. Actual liquid sound speed and system signal strength readings can be accessed through this menu.

The SERVICE Menu also has features that allow adjustment of Signal Strength Cutoff, Error-Mode outputs, Zero Flow Rate Set and entry of a universal correction factor.

SSPD MPS - Sound Speed in the Liquid Metric SSPD FPS - Sound Speed in the Liquid U.S.

The HTTP performs an actual speed of sound calculation for the liquid it measures. This calculation will vary with temperature, pressure and fluid composition. The value indicated should be within 2% of the value entered/indicated in the BASIC menu item FLUID SS. The value cannot be modified. If the actual measured value is significantly different than the BASIC MENU's FLUID SS value, it typically indicates a problem with the instrument setup. Any entry such as PIPE OD or wall thickness may be in error, the pipe may not be round, or the transducer spacing is not correct. Table 3.3 on page 3.26 lists sound speed values for water at varying temperatures. If the HTTP is measuring sound speed within 2% of the table values, then the installation and setup of the instrument is correct and accurate readings may be assured.

Liquid Sound Speed

Table 3.3 Sound Speed in Liquid Water vs. Temperature

Deg. C Deg. F Vs (m/s)		Vs (f/s)	
0	32	1402	4600
10	50	1447	4747
20	68	1482	4862
30	86	1509	4951
40	104	1529	5016
50	122	1543	5062
60	140	1551	5089
70	158	1555	5102
80	176	1554	5098
90	194	1550	5085
100	212	1543	5062
110	230	1532	5026
120	248	1519	4984
130	266	1503	4931
140	284	1485	4872
150	302	1466	4810
160	320	1440	4724
170	338	1412	4633
180	356	1390	4560
190	374	1360	4462
200	392	1333	4373
220	428	1268	4160
240	464	1192	3911
260	500	1110	3642

Signal Strength

SIG STR - Signal Strength

The measurement of Signal Strength assists service personnel in troubleshooting the HTTP system. In general, expect the signal strength readings to be greater than 4% on a full pipe with the transducers properly mounted. Signal strength readings that are less than 4% may indicate a need to chose an alternative mounting method for the transducers, or that an improper pipe size has been entered.

Signal Strength readings in excess of 95% may indicate that a mounting method with a longer path length may be required. For example, if transducers mounted on a 3 inch PVC pipe in V-mode causes the measured Signal Strength value to exceed 95%, change the mounting method to W-mode for greater stability in readings.

Signal Strength Cutoff	Signal Strength Cutoff SIG C-OF is used to drive the flow meter and its outputs to the SUB FLOW (Substitute Flow– described below) state if conditions occur that cause low signal strength. A signal strength indication of between 0.5 and 0.8 is inadequate for measuring flow reliably, so minimum settings for SIG C-OF are in the range of 1.0 to 2.0. A good practice is to set the SIG C-OF at approximately 60-70% of ac- tual measured signal strength (described above). If the measured signal strength is lower than the SIG C-OF setting, an ERROR 0010 will be displayed on the HTTP display until the measured signal strength becomes greater than the cutoff value.			
Substitute Flow Entry	Substitute Flow or SUB FLOW is a value that the analog outputs and the flow rate display will indicate when an error condition in the flow meter occurs. The typical setting for this entry is a value that will make the instrument display zero flow during an error condition. Table 3.4 below lists some typical settings to achieve "Zero" with respect to MIN and MAX FLOW settings.			
	MIN RATE SETTING	MAX RATE SETTING	SUB FLOW SETTING	DISPLAY READING DURING ERRORS
	0.0	1,000.0	0.0	0.000
	-500.0	500.00	50.0	0.000
	-100.0	200.0	33.3	0.000
	0.0	1,000.0	-5.0*	-50.00
	* <i>UltraLink</i> 100.0.	is require	d to set va	lues outside of 0.0-

TABLE 3.4—Substitute Flow Entry

Setting/Calibrating Zero Flow

Because every flow meter installation is slightly different and sound waves can travel in slightly different ways through these various installations, a provision is made in this entry to establish "Zero" flow—SET ZERO.

To zero the meter:

- 1. The pipe must be full of liquid.
- 2. Flow must be absolute zero—securely close any valves and allow time for any settling to occur.
- 3. Press ENTER, use the arrow keys to make the display read YES.
- 4. Press ENTER.
- 5. The procedure is complete.

If the flow in a piping system cannot be shut off, allowing the SET ZERO procedure described above to be performed, then the factory default zero should be utilized. To utilize the D-FLT 0 function, simply press ENTER, then press an ARROW key to display YES on the display and then press ENTER. This function can also be utilized to correct an inadvertently entered or erroneous SET ZERO entry.

This function can be used to make the HTTP system agree with a different or reference flow meter, by applying a correction factor/multiplier to the readings and outputs. A factory calibrated system should be set to 1.000. The range of settings for this entry is 0.500 to 1.500. The following examples describe two uses for the COR FTR entry.

• The HTTP meter is indicating a flow rate that is 4% higher than another flow meter located in the same pipe line. To make the HTTP indicate the same flow rate as the other meter, enter a COR FTR of 0.960, to lower the readings by 4%.

Factory Default Zero Calibration

Correction Factor

PART 3 ·	· KEYPAD	CONFIGUR	ATION
----------	----------	----------	-------

• An out-of-round pipe, carrying water, causes the HTTP to indicate a measured sound speed that is 7.4% lower than the TABLE 3.3 value. This pipe condition will cause the flow meter to indicate flow rates that are 7.4% lower than actual flow. To correct the flow readings, enter 1.074.
7. DSP MENU DISPLAY MENU
Allows the selection of a two line or four line display format on the graphics display module.
In 2 Line mode, the display will display flow measure- ments with larger characters on the top half of the window and smaller standard sized characters on the lower half of the window. In 4 Line mode, the display will display flow measurements with standard sized characters on four lines in the window.
DISPLAY UNITS SELECTION
The (soft)SELECT key is used to configure the engineering units on the graphics display—Press the (soft)SELECT key from RUN mode to highlight the engineering unit presently being displayed on the graphics display (pressing the SELECT key multiple times will toggle the highlighted unit from line to line). Use the UP/DOWN ARROW keys to select display units of
KATE TOTALizer VELocity
SIGNAL STRength

Back Light Timeout

The LED backlighting on the HTTP is used to assist the operator in viewing the display in poorly lit areas the backlighting, when activated, doubles the power consumption of the flow meter. If left on continuously, the charge in the battery will be depleted much more rapidly than if the backlighting is only activated for short periods of time. If the instrument is being operated while powered from an external power source, the back light may be left on permanently.

Adjust the Back Light Timeout to approximate the amount of seconds that the backlighting should remain active. The time out can be set anywhere between 10 and 30,000 seconds. If continuous backlighting is desired, set the Back Light Timeout to 0 seconds.

Important Notice!

The HTTP flow meter can be used with two software utilities, *UltraLink*^m and *Data Logger*. The *UltraLink* utility is used for configuration, calibration and communication with the HTTP flow meter. The *Data Logger* utility is used for uploading and translating data accumulated in the data logger module located in the pocket on the front faceplate of the flow meter.

UltraLink has been designed to provide a HTT user a powerful and convenient way to configure and calibrate HTTP flow meters. *UltraLink* can be used in conjunction with the infrared communications adapter included in the HTTP case or the optional ISO-MOD RS232 and ISO-MOD RS485.

System Requirements

Computer type - PC, operating system - Windows[®] 95/98/2000/NT, a communications port for the infrared adapter, access to the Hedland web site.

Installation

- 1. Go to www.hedland.com
- 2. Go to Products/Transit Time Ultrasonic/Software
- 3. Click the *UltraLink*TM icon.
- 4. Follow downloading instructions.
- 5. **UISetup** will automatically extract and install on the hard disk and place a short-cut icon on the desktop.
- 6. Some PCs may require a restart after a successful installation.

A CD of the *UltraLink* software can also be purchased by contacting Hedland sales at 800-433-5263 or 262-639-6770. Please refer to part number HTTP-086.

Initialization

1. Connect the infrared communications adapter to a PC communication port and point the communicator at the HTTP infrared window, located in the lower right hand corner of the keypad. If meter is ordered with a ISO-MOD RS232 or ISO-MOD RS485,

connect the PC Communications port directly to the optionally installed RS232C or RS485 port located on side of HTTP meter.

Notes: The range of the infrared communications adapter is roughly 3 meters. Some high-intensity lighting systems will reduce the infrared communications range.

2. The first screen is the "RUN-mode" screen, See Figure 4.1, which contains real-time information regarding flow rate, totalizer accumulation, system signal strength, diagnostic data and the flow meter's serial number. The indicator in the lower right-hand corner will indicate communications status. If a red ERROR is indicated, click on the Communications button on the top bar. Click on Initialize. Choose the appropriate COM port and interface type. Proper communications are established when a green OK is indicated in the lower right-hand corner of the PC display.

Configuration

Click on the button labeled **Configuration** for updating flow range, liquid, pipe and I/O operating information. The first screen that appears after clicking the **Configuration** button is the **BASIC** tab. See **Figure 4.2**.

Dasie	Flow	Uutput Security							
	Units:	English	•	Gene	ral				
		,		Transd	ucer				
	Туре:	Std Clamp-on	-	Mount	v 💌		Spacing:	9.96 in	
				Pipe	,				
	Material:	Carbon Steel	-	SoundSpeed:	10598.00	FPS	Roughness:	0.000150	
				Pipe OD:	12	in	Wall Thickness:	0.5	in
				Line	r				
	Material:	None	-	SoundSpeed:		FPS	Roughness:		
				Thickness:		in			
				Fluid	1				
	Туре:	Water Tap	-	SoundSpeed:	4911.50	FPS	Abs. Viscosity:	1.00	ср
							Spec. Gravity:	1.00	
File Or	pen	File Save				Г	Download 0	Cancel	

Figure 4.2 Basic Tab

BASIC TAB - see Figure 4.2

- **General Units** allows selection of either English (U.S.) or Metric units of measure. If measurements of the pipe are to be entered in inches, select English. If measurements are to be entered in millimeters, select Metric. If the General Units are altered from those at instrument startup, then click on the Download button on the lower right-hand portion of the screen and re-cycle power to the HTTP.
- **Transducer Type** selects the transducer that will be connected to the HTT flow meter. Select from HTTN, HTTH, or HTTS models. This selection will influence transducer spacing and flow meter performance. If you are unsure about the type of transducer to which the HTT will be connected, consult the shipment packing list or call the Hedland factory for assistance. A change of Transducer Type will cause a System Configuration Error (Error 1002) to occur. This error will clear when the microprocessor is reset or power is cycled on the flow meter.

- **Transducer Mount** selects the orientation of the transducers on the piping system. See **Part 2** of this manual and **Table 2.2** for detailed information regarding mounting modes for particular pipe and liquid characteristics. Whenever Transducer Mount is changed, a download command and subsequent microprocessor reset or flow meter power cycle must be conducted.
- **Transducer Spacing** is a value calculated by the HTT flow meter that takes into account pipe, liquid, transducer and mounting information. This spacing will adapt as these parameters are modified. The spacing is given in inches for English units selection and mm for Metric. This value is the lineal distance that must be between the center lines on the transducer heads.
- **Pipe Material** is selected from the pull-down list. If the pipe material utilized is not located on the list, select Other and enter pipe material sound speed (much of this information is available via web sites such as www.ultrasonic.com) and relative roughness (rms internal surface regularities/the pipe internal diameter) of the pipe.
- **Pipe O.D.** and **Wall Thickness** are based on the physical dimensions of the pipe on which the transducers will be mounted. Enter this value in inches for English units or millimeters for Metric units.
- Liner Material is selected from the pull-down list. If the pipe liner material utilized is not located on the list, select Other and enter liner material sound speed (much of this information is available at web sites such as www.ultrasonic.com) and relative roughness (rms internal surface regularities/the pipe internal diameter) of the pipe liner.
- Fluid Type is selected from a pull-down list. If the liquid is not located on the list, select Other and enter the liquid sound speed and viscosity into the appropriate boxes. Liquid Specific Gravity is required if mass measurements are to be made.
| | System Configuration | X | | | | | |
|---------------|--|--|--|--|--|--|--|
| | Basic Flow Advanced Output Flow Rate Units: [0]] Barrel Totalizer Units: [0]] Barrel Min Flow: [0.0] Max Flow: [1800.0] | nut Display Image: provide the second sec | | | | | |
| | | Figure 4.3
Flow Tab | | | | | |
| Flow Units | FLOW Tab - see Figure 4.3 | | | | | | |
| Configuration | • Flow Rate Units are selected from the pull down lists. Select an appropriate rate unit and time from the two lists. | | | | | | |
| | • Totalizer Units are selected from pull down lists. Select an appropriate totalizer unit and totalizer exponent. The totalizer exponents are in Scientific Notation and permit the eight digit totalizer to accumulate large values before the totalizer "rolls over" and starts again at zero. Table 4.1 illustrates the Scientific Notation values and their respective decimal equivalents | | | | | | |
| | TABL | E 4.1 - Totalizer Exponent Values | | | | | |
| | Exponent | Display Multiplier | | | | | |
| | E-1 | x 0.1 (divide by 10) | | | | | |
| | E0 | x 1 (no multiplier) | | | | | |
| | E1 | x 10 | | | | | |
| | E2 | x 100 | | | | | |
| | E3 | x 1,000 | | | | | |
| | E4 | x 10,000 | | | | | |
| | E5 | x 100,000 | | | | | |
| | E6 | x 1,000,000 | | | | | |

- **MIN Flow** is used by the HTT to establish filter settings in its operating system. Enter a flow rate that is the minimum flow rate anticipated within the system. For uni-directional systems, this value is typically zero. For bi-directional systems this value is set to a negative number that is equal to the maximum negative flow rate that is anticipated within the system.
- **MAX Flow** is used by the HTT to establish filter settings in its operating system. Enter a flow rate that is the maximum, positive flow rate anticipated within the system.
- The **Damping** value is increased to increase stability of the flow rate readings. Damping values are decreased to allow the flow meter to react faster to changing flow rates.
- Low Flow Cutoff is entered as a percentage between MAX and MIN Flow. It influences how the meter will act at flows close to zero. Typically, an entry of 1% provides a stable zero indication, while providing a 100:1 turndown ratio for measurements.
- Low Signal Cutoff is a relative value that should be entered after a successful startup. For an initial value, enter 5% (Signal Strength indications below 3% are considered to be below the noise ceiling and should not be indicative of a successful flow meter startup.) The entry has three purposes. It provides an error indication—Low Signal Strength (Error 0010 on display) when liquid conditions within the pipe have changed to the point where flow measurements may not be possible. It warns if the pipe's liquid level has fallen below the level of the transducers. It can signal that something with the flow meter installation or configuration may have changed. For example, the couplant used to mount the transducer has become compromised, a cable has been disconnected or a pipe size has been altered.
- **Substitute Flow** is used to provide an indication and output that signifies that an error exists with the flow meter or its setup. It is set as a percentage between MIN Flow and MAX Flow. In a unidirectional system, this value is typically set to zero to indicate zero flow while in an error condition. In a bi-directional system, the percentage can be set such that zero is displayed in a error condition. To calculate where to set the Substitute Flow value in a bi-directional system, perform the following operation:

Substitute Flow =

100 x MAX Flow

MAX Flow + MIN Flow

Downloading the Configuration Entry of data in the **Basic** and **Flow** tabs is all that is required to provide flow measurement functions to the flow meter. If the user is not going to utilize input/output functions, click on the **Download** button to transfer the configuration to the HTT instrument.

Meter Filter Configuration The Advanced TAB (see **Figure 4.4**) contains several filter settings for the HTT flow meter. These filters can be adjusted to match response times and data "smoothing" performance to a particular application. The factory settings are suitable for most installations.

Time Domain Filter: 🖪 🚊	Elow Filter(Damping): 80 🗮 %	
Low Signal Cutoff: 5 📑 %	Flow Filter <u>H</u> ysterysis: 5 🚔 %	
Substitute Flow: 0 🚔 %	Flow Filter MinHysterysis: 303 🚔 psec	
	Flow Filter Sensitivity: 3 🚍	
Short Pulse Duration: 0 🚊 (0 = disabled)	Bad Data Rejection: 3	Factory Default
Auto Short Puise: J		

Figure 4.4 Advanced Tab

- **Time Domain Filter** adjusts the number of raw data sets (the wave forms viewed on the *UltraLink*[™] Diagnostics Screen) that are averaged together. Increasing this value will provide greater damping of the data and slow the response time of the flow meter. This filter is not adaptive—it is operational to the value set at all times.
- Low Signal Cutoff is a duplicate entry from Page 4.6. Adjusting this value adjusts the value on the Flow TAB.
- **Substitute Flow** is a duplicate entry from Page 4.6. Adjusting this value adjusts the value on the Flow TAB.

- Short Pulse Duration is a function used on pipes larger than 2 inches (50 mm). If the pipe has an outer diameter of 8 inches or more, make sure that the Auto Short Pulse box is checked. Set this value to zero to disable the function.
- Flow Filter Damping establishes a <u>maximum</u> adaptive filter value. Under stable flow conditions (flow that varies less than the Flow Filter Hysteresis entry) this adaptive filter will increase the number of successive flow readings that are averaged together up to this maximum value. If flow changes outside of the Flow Filter Hysteresis window, the Flow Filter adapts by decreasing and allows the meter to react faster. Increasing this value tends to provide smoother steady-state flow readings and outputs.
- Flow Filter Hysteresis creates a window around the average flow measurement reading whereby if the flow varies within that window, greater Flow Filter Damping will occur. The filter also establishes a flow rate window where measurements outside of the window are captured by the Bad Data Rejection Filter. The value is entered as a percentage of actual flow rate.

Example:

If the average flow rate is 100 GPM and the Flow Filter Hysteresis is set to 5%, a filter window of 95-105 GPM is established. Successive flow measurements that are measured within that window are recorded and averaged in accordance with the **Flow Filter Damping** setting. Flow readings outside of the window are held up in accordance with the **Bad Data Rejection Filter**.

- Flow Filter MinHysteresis sets a minimum hysteresis window that is invoked at sub 0.25 FPS (0.08 MPS) flow rates, where the "of rate" Flow Filter Hysteresis is very small and ineffective. This entry is entered in pico-seconds and is differential time. If very small fluid velocities are to be measured, increasing the Flow Filter MinHysteresis value can increase reading stability.
- Flow Filter Sensitivity allows configuration of how fast the Flow Filter Damping will adapt in the <u>positive</u> direction. Increasing this value allows greater damping to occur faster than lower values. Adaptation in the negative direction is not user adjustable.

	• Bad Data Rejection is a va successive readings that must b Filter Hysteresis and Flow I before the flow meter will use tha entered into the Bad Data Rej that contain gas bubbles, as the ultrasonic signals and cause mo occur. Larger Bad Data Rejection meter more sluggish to rapid char	Ilue related to the number of e measured outside of the Flow Filter MinHysteresis windows at flow value. Larger values are ection when measuring liquids gas bubbles tend to disturb the ore extraneous flow readings to on values tend to make the flow anges in actual flow rate.						
Output Configuration	Entry of data in the Basic and Flow to provide flow measurement function is not going to utilize input/output fur the Download button to transfer instrument.	<i>i</i> screens are all that is required ons to the flow meter. If the user inctions or data logging, click on the configuration to the HTTP						
	The entries made in the Output TAB (See Figure 4.5) establish input and output calibration and ranges for ISO-MOD modules in- stalled in the HTTP flow meter. If a module was ordered from and installed at the Hedland factory, then the Output TAB will contain information and configuration for that module. Select the appropri- ate module from the pull-down menu and press the Download button. If a module has been changed from the factory setting, a Configuration error will result. This error will be cleared by resetting the HTTP microprocessor from the Communications/							
	System Configuration X Basic Flow Advanced Output Security Multichan/Multipath							
	Module #1 Datalog	Module #2 4-20 mA						
	 Off On Sampling Interval (seconds): 2 	Flow @4mA: 0 Gal/Min Flow @20mA: 100 Gal/Min						
		Calibration/Test Calibration 4 mA 0 = 20 mA 9600 = Test Test						
	File Open File Save	Download Cancel Help						
	Figure 4-20mA Conf	4.5 iguration						

Commands/Reset Target button or by cycling power on the HTT flow meter. Once the proper output modules are selected and the microprocessor is reset, calibration and configuration of the modules can be completed. If a module slot is empty in the HTT enclosure, select NONE as the module type.

To configure the 4-20 mA output or data logger, click on the **Output** tab (See **Figure 4.5**). The output menu allows selection, configuration, calibration and testing of various input/output modules. Standard HTTP flow meters contain a single 4-20 mA output module located in Module #2 position and a data logger located in the Module #1 position. The window will appear as shown in **Figure 4.5**. (The 4-20 mA module is mounted internally in the flow meter and requires meter disassembly in order to replace the module. The data logger is located under the sealed front plate on the meter face. The logger is designed for repeated installation and removal.) Detailed information regarding all of the modules available and configuration options are available in section 3 of this manual. To disable the data logger, select None for Module #1, and select any other module for Module #2.

4-20 mA Module Configuration

If the 4-20 mA output has been installed, the screen shown in **Figure 4.5** will appear in *UltraLink*TM at the OUTPUT tab:

- Flow @4mA and Flow @20mA set the span of the 4-20 mA output. The entry is made in the same flow measurement units that were entered in the Flow Tab. The output can be set to span across zero (4 mA can be set to a negative flow value) so that the module will output bi-directional flow. For example, if a flow range spans from -100 to +100, the HTT will output 4 mA at -100 and 20 mA at +100 and output 12 mA (50% of the output) at 0.
- **Calibration/Test** is used to adjust the factory calibration span of the 4-20 mA output and to test the output. The 4-20 mA output is factory calibrated and should not require adjustment in the field. If the module is replaced or if recalibration is required, the following procedure is used to calibrate the span of the module:
 - 1. Connect a milliamp meter serially within the 4-20 mA module output.
 - 2. Check the Calibration/Test box.

- 3. Select the 4 mA Calibration box.
- 4. Adjust the count value to the right of the 4 mA button until the milliamp meter registers 4.00 mA.
- 5. Select the 20 mA Calibration box.
- 6. Adjust the count value to the right of the 20 mA button until the milliamp meter registers 20.00 mA.
- 7. Press the Test button.
- 8. Adjust the count value to 12.
- 9. Verify that the milliamp meter registers 12.00 mA.
- 10. Uncheck the Calibration/Test box.

Flow Meter Calibration

Setting Zero and Calibration

*UltraLink*TM contains a powerful multi-point calibration routine that can be used to calibrate the HTT flow meter to a primary measuring standard in a particular installation. To initialize the three-step calibration routine, click on the Calibration button located on the top of the *UltraLink*TM **Data Screen**. The display shown in **Figure 4.6** will appear. The first step (Page 1 of 3) in the calibration process is the selection of the engineering units with which the calibration will be performed. Select the units and click the **Next** button at the bottom of the window.

Calibration (Page 1 of 3) - General setup							
File Open	File Save Fi Calib	 gure 4.6 ration Units	Cancel Help				

The second screen (Page 2 of 3) **Figure 4.7**, establishes a baseline zero flow rate measurement for the instrument. To zero the flow meter, establish zero flow in the pipe (turn off all pumps and close a dead-heading valve). Wait until the delta-time interval shown in **Figure 4.7** is stable (and typically very close to zero). Click the **Set** button. Click the **Next** button when prompted, then click the **Finish** button on the Calibration Screen.

Figure 4.7 Setting Zero Flow

Important!

NOTE: If the **Set** button was clicked, do not proceed with Flow Rate Calibration before clicking the **Finish** button to save the Zero setting.

The screen shown in **Figure 4.8** (Page 3 of 3) allows multiple actual flow rates to be recorded by the HTT. To calibrate a point, establish a stable, known flow rate (verified by a real-time primary flow instrument), enter the actual flow rate in the **Figure 4.8** window and click the **Set** button. Note: If only two points are to be used (zero and span), it is preferable to use the highest flow rate anticipated in normal operation as the calibration point. If an erroneous data point is collected, the point can be removed by pressing the **Edit** button, selecting the bad point and then selecting Remove.

	Calibration (Page 3 of 3) - Linearization
	1200.0 Item is a stable, enter the press Set. If the flow is not stable, try characteria to flow and the filter parameters in the avanced tab of the system setup If the flow is not stable, try characteria to flow is the avanced tab of the system setup If the flow is not stable, try characteria to flow is not stable. If the flow is not stable, try characteria to flow is not stable. If the flow is not stable.
	File Open File Save < Back
Important!	Press the Finish button when all points have been gathered. NOTE: Do not enter a zero flow rate under page 3 of 3 above. NOTE: Hedland recommends only using one span point to achieve highest results.
Saving the Configuration	Saving Meter Configuration on a PC The complete configuration of the flow meter can be saved from the Configuration screen. Select File Save button located in the lower left-hand corner of the screen and name the file. Files are saved as a *.dcf extension. This file may be transferred to other flow meters or may be recalled should the same pipe be surveyed again or multiple meters programmed with the same information.
Printing a Report	Printing Out a Flow Meter Configuration and Calibration Report Select File from the upper task bar and Print to print out a calibration/configuration information sheet for the flow meter installation.

Using the Data Logger Software

During the installation of *UltraLink*TM, a file called **Data Logger** was installed and its icon will appear on the Desktop of the computer. Double-click on the icon to start the utility. The screen shown in **Figure 4.9** will appear as the computer is attempting to establish communications with the logger module.

<u>File E</u> dit <u>V</u> iew	<u>C</u> ommunica	itions <u>H</u> elp						
Save	C Clock	X Delete File	රි Comm Debug					
Serial Number: Version:			# ID N	ame	Start Time No files availa	ble	Points Us	ed
Size (bytes):		Please Wait Connectin	g with datalogge	r	x	1		
			Comm Init	Exit				F

Connect the logger to the computer's serial communications port with the enclosed DB9 cable. After a few moments, the Please Wait window will disappear and a green OK will appear in the lower right-hand corner of the window. After communications are established (and the OK is displayed) the utility will scan the logger for all existing files. If the logger module is very full, uploading of the file data may take several minutes. A bar graph showing upload progress will provide status. The files will appear on the table (see **Figure 4.10**). Information regarding starting time, date and points collected will appear.

If a file is selected, the time-stamped data will appear on the strip chart located on the bottom of the window. The mouse can be used to select a small portion of the graph and expand the data to the width of the screen. To revert to the entire data file, right-click the graph.

Figure 4.10

To save the file to a computer, select the file from the file table and click the Save button located on the top task bar (see **Figure 4.11**). Data Logger saves the files in .csv (comma separated value) format. For data manipulation or graphical purposes, these files can be opened using a spreadsheet application such as the Microsoft[®] Excel[®] program or the Corel[®] Quattro Pro[®] program.

Note: The spreadsheet programs listed above are limited to the number of lines of data that can be imported. Large files may need to open in Microsoft[®] WordPad and saved in two or more sections.

The data logger module contains a real-time clock that can be set by clicking the Clock button on the top task bar (see **Figure 4.12**). Activating the window compares the data logger clock to the clock located in the PC. Adjustments can be made and uploaded to the logger.

<u>File E</u> dit <u>V</u> iew	<u>C</u> ommu	nications <u>H</u> elp	
Save	C Clock	Öð Delete File Comm Debug	
Serial Number	00. S	et Datalog Time	X Points L
Version	1.0	Datalogger Clock	
Size (bytes)	410	Time: 5/16/2000 8:34 (m/d/y h:m)	
ei		-PC Clock	
		Date: 5/10/00 Time: 9:29:57 AM	
Re		Date. 5/16/00 💽 Mile. 0.23.37 Am	
		OK Cancel	
E			
Р			

Figure 4.12

APPENDIX

HTT Error Codes

Revised 2-22-2002

Code Number	Description	Correction
Warnings		
0001	Serial number not present	Hardware serial number has become inoperative – system performance will not be influenced.
0010	Signal Strength is below Signal Strength Cutoff entry	 Low signal strength is typically caused by one of the following: Empty pipe Improper programming/incorrect values Improper transducer spacing Non-homogeneous pipe wall
0011	Measured Speed of Sound the in the liquid is greater than 10% different than the value entered during meter setup	Verify that the correct liquid was selected in the BASIC menu. Verify that pipe size parameters are correct.
0020	Heat Flow Units of measure have been selected and an RTD module has not been installed	Verify that RTD Module has been installed in one of the I/O meter slots. Verify that OUTPUT1 or OUTPUT 2 has been configured for RTD measurements.
Class C Errors		
1001	System tables have changed	Initiate a meter RESET by cycling power or by selecting SYSTEM RESET in the SEC MENU.
1002	System configuration has changed	Initiate a meter RESET by cycling power or by selecting SYSTEM RESET in the SEC MENU.
Class B Errors		
3001	Invalid hardware configuration	Upload corrected file
3002	Invalid system configuration	Upload corrected file
3003	Invalid strategy file	Upload corrected file
3004	Invalid calibration data	Recalibrate the system
3005	Invalid speed of sound calibration data	Upload new data
3006	Bad system tables	Upload new table data
3007	Data Logger is off or not present	If desired, insert data logger and configure within the Datalog Operations Menu. If logger is not present, configure I/O port for no logger.
3010	One or more channels are not responding (Multi-channel meters only)	Display indicates which secondary units are not communicating with Master meter. Verify wiring, configuration and address of secondary instrument.
3011	All channels are not responding (Multi- channel meters only)	Verify wiring, configuration and address of secondary instruments.
Class A Errors		
4001	Flash memory full	Return unit to factory for evaluation

Fluid Properties

Original Date:7/30/1999Revision:ARevision Date:9/10/2003File:I:/dynasonics/dyna_code/tables/fluid_ss.xls

Fluid	Specific Gravity	Sound	Speed	delta-v/degree C	Kinematic Viscosity	Absolute Viscosity
	20 degrees C	m/s	ft/s	m/s/degree C	Centistokes	Centipoise
Acotato Butul		1270	1162 0			
Acetate, Buly	0.001	1270	4103.9 2550.7	1 1	0.490	0.441
Acetate, Ethyl	0.901	1000	2072 1	4.4	0.409	0.441
Acetate, Metry	0.934	1211	3973.1		0.407	0.300
Acetale, Propyr	0.70	1280	4190.7	4 5	0.200	0.246
Acelone	0.79	11/4	3651.7	4.5	0.399	0.310
Alcohol Dutul	0.79	1207	3960.0	4.0	1.396	1.101
Alconol, Butyl	0.83	1270	4163.9	3.3	3.239	2.688
Alcohol, Ethyl	0.83	1180	3868.9	4	1.396	1.159
Alcohol, Methyl	0.791	1120	3672.1	2.92	0.695	0.550
Alcohol, Propyl		1170	3836.1			
Alcohol, Propyl	0.78	1222	4009.2		2.549	1.988
Ammonia	0.77	1729	5672.6	6.7	0.292	0.225
Anlline	1.02	1639	5377.3	4.0	3.630	3.710
Benzene	0.88	1306	4284.8	4.7	0.711	0.625
Benzol, Ethyl	0.867	1338	4389.8		0.797	0.691
Bromine	2.93	889	2916.7	3.0	0.323	0.946
n-Butane	0.60	1085	3559.7	5.8		
Butyrate, Ethyl		1170	3836.1			
Carbon dioxide	1.10	839	2752.6	7.7	0.137	0.151
Carbon tetrachloride	1.60	926	3038.1	2.5	0.607	0.968
Chloro-benezene	1.11	1273	4176.5	3.6	0.722	0.799
Chloroform	1.49	979	3211.9	3.4	0.550	0.819
Diethyl ether	0.71	985	3231.6	4.9	0.311	0.222
Diethyl Ketone		1310	4295.1			
Diethylene glycol	1.12	1586	5203.4	2.4		
Ethanol	0.79	1207	3960.0	4.0	1.390	1.097
Ethyl alcohol	0.79	1207	3960.0	4.0	1.396	1.101
Ether	0.71	985	3231.6	4.9	0.311	0.222
Ethyl ether	0.71	985	3231.6	4.9	0.311	0.222
Ethylene alvcol	1.11	1658	5439.6	2.1	17,208	19,153
Freon R12		774.2	2540			
Gasoline	0.7	1250	4098.4			
Glycerin	1 26	1904	6246 7	22	757 100	953 946
Glycol	1 11	1658	5439.6	21	1011100	000.010
Isobutanol	0.81	1212	3976.4	2.1		
Iso-Butane	0.01	1219.8	4002			
Isonentane	0.62	980	3215.2	18	0.340	0 211
Isopronanol	0.02	1170	3838.6	4.0	2 718	2 13/
Isopropul alcohol	0.79	1170	3838.6		2.718	2.134
Kerosene	0.75	1324	1313 8	3.6	2.710	2.134
Linglool	0.01	1324	4540.2	5.0		
	025 020	1770	4090.Z			
Linseed Oil	.925939	1770	5803.3	2.02	0.005	0 550
Ivietnanoi Methyl elechal	0.79	1076	3530.2	2.92	0.095	0.550
	0.79	10/6	3530.2	2.92	0.040	0.550
wethylene chloride	1.33	1070	3510.5	3.94	0.310	0.411
wethylethyl Ketone	00.007	1210	3967.2			
IVIOTO UII (SAE 20/30)	.88935	1487	48/5.4		0	0 5 4 0
Octane	0.70	1172	3845.1	4.14	0.730	0.513

Oil, Castor	0.97	1477	4845.8	3.6	0.670	0.649
Oil, Diesel	0.80	1250	4101			
Oil (Lubricating X200)		1530	5019.9			
Oil (Olive)	0.91	1431	4694.9	2.75	100.000	91.200
Oil (Peanut)	0.94	1458	4783.5			
Paraffin Oil		1420	4655.7			
Pentane	0.626	1020	3346.5		0.363	0.227
Petroleum	0.876	1290	4229.5			
1-Propanol	0.78	1222	4009.2			
Refrigerant 11	1.49	828.3	2717.5	3.56		
Refrigerant 12	1.52	774.1	2539.7	4.24		
Refrigerant 14	1.75	875.24	2871.5	6.61		
Refrigerant 21	1.43	891	2923.2	3.97		
Refrigerant 22	1.49	893.9	2932.7	4.79		
Refrigerant 113	1.56	783.7	2571.2	3.44		
Refrigerant 114	1.46	665.3	2182.7	3.73		
Refrigerant 115		656.4	2153.5	4.42		
Refrigerant C318	1.62	574	1883.2	3.88		
Silicone (30 cp)	0.99	990	3248		30.000	29.790
Toluene	0.87	1328	4357	4.27	0.644	0.558
Transformer Oil		1390	4557.4			
Trichlorethylene		1050	3442.6			
1,1,1-Trichloro-ethane	1.33	985	3231.6		0.902	1.200
Turpentine	0.88	1255	4117.5		1.400	1.232
Water, distilled	0.996	1498	4914.7	-2.4	1.000	0.996
Water, heavy	1	1400	4593			
Water, sea	1.025	1531	5023	-2.4	1.000	1.025
Wood Alcohol	0.791	1076	3530.2	2.92	0.695	0.550
m-Xylene	0.868	1343	4406.2		0.749	0.650
o-Xylene	0.897	1331.5	4368.4	4.1	0.903	0.810
p-Xylene		1334	4376.8		0.662	

Digital Communications Protocol for HTT Flow Meters

Host protocol

A digital communications protocol is utilized. Each message is guarded with the standard CRC-16 error detection (C source code is included)

The host protocol is a master-slave type protocol with the flow meter being the slave. The messages have the following format:

<addr><command><data>...<data><crc-16>

A unit may be assigned an address that responds to (valid addresses are 1-7E). All devices respond to address 7F (ie. this address may not be used for multidrop) and all devices listen to address 0 but do not respond (this is the "broadcast" address).

The following special commands are defined:

Command	Description
65	Special "short" commands
66	Special "long" commands

Command 65 allows up to 255 data items to be transferred while command 66 allows up to 65535 items (The actual maximum size is limited by the memory allocated for the communication buffers and for TOF it is 2048 bytes). There is special encoding for the data for commands 65 and 66 as follows:

Command	1 65:		
<\$	size> <code><data1><datan-1></datan-1></data1></code>	N = <size></size>	
Command	1 66:		

<size_h><size_l><code><data₁>...<data_{N-1}> N = <size_h>*256 + <size_l>

The target device will respond the same for both 65 and 66 commands. The host program needs to make sure that the proper opcode will be used based on the data size requested.

In case of an error, the target will reject the message by replying with an error code. The target will not reply to an ill-formed command (ie. incomplete or CRC-16 error). The error reply is:

<addr><opcode><errorcode><crc-16>

where:

<opcode> is the requested opcode with the Most Significant bit turned on.

The following error codes are defined:

Error Code	Description
1	Bad Command (Invalid command)
2	Bad Command Data
71h	Command not allowed.
72h	Buffer overflow (data exceeded internal allocated memory)
73h	Command not implemented in this version

Special codes

The following special 65 and 66 codes are supported.

Code	Description
00	Echo (for comm debugging)
0A	Read run time data (signal strength, flow rate and totalizers)
0B	Reset Totalizers

Code 00 – Echo

Command:	<addr>65<size>00<data1><datan><crc-16></crc-16></datan></data1></size></addr>
Reply:	<addr>65<size>00<data1><data2<crc-16></data2<crc-16></data1></size></addr>

Code 0A - Read Flow data

Command:	<addr>65010A<crc-16></crc-16></addr>
Reply:	<addr>65210A<data1><datan><crc-16></crc-16></datan></data1></addr>

The data section of the reply contains the byte stream representation of the flow data as follows (all numbers use the Intel format – ie. Least significant byte first):

Byte	Туре	Description
0-1	2 byte integer	Signal Strength (0-1000)
2-9	8 byte floating point	Current flow rate in the units programmed
10-17	8 byte floating point	Net Totalizer in the units programmed
18-25	8 byte floating point	Positive Totalizer
26-33	8 byte floating point	Negative Totalizer

Code 0A Extension 1 - Read Extra Flow data

The data section of the reply contains the byte stream representation of the flow data as follows (all numbers use the Intel format – ie. Least significant byte first):

Byte	Туре	Description
0-1	2 byte integer	Signal Strength (0-1000)
2-9	8 byte floating point	Current flow rate in the units programmed
10-17	8 byte floating point	Net Totalizer in the units programmed
18-25	8 byte floating point	Positive Totalizer
26-33	8 byte floating point	Negative Totalizer
34-41	8 byte floating point	Temp 1 in deg C
42-49	8 byte floating point	Temp 2 in deg C

Code 0B – Reset Totalizers

Command:	<addr>65010B<crc-16></crc-16></addr>
Reply:	<addr>65010B<crc-16></crc-16></addr>

C Source Code

Flow Data Definition

```
struct FLOWDATA
{
                   sSignalStrength;
      short
      double
                   dCurFlowRate;
      double
                   dNetTotalizer;
      double
                   dPositiveTotalizer;
      double
                   dNegativeTotalizer;
};
struct FLOWDATA EX
{
                   sSignalStrength;
      short
      double
                   dCurFlowRate;
      double
                   dNetTotalizer;
      double
                   dPositiveTotalizer;
                   dNegativeTotalizer;
      double
      double
                   dTemp1;
      double
                   dTemp2;
};
```

CRC-16 Calculations

```
unsigned short crc table[256] = {
   0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
   0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
   0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
   0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
   0xD801, 0x18C0, 0x1980, 0xD941, 0x1800, 0xDBC1, 0xDA81, 0x1A40,
   0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
   0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
   0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
   0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
   0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
   0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
   0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
   0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
   0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
   0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
   0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
   0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
   0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
   0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
   0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
   0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
   0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
   0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
   0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
   0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
   0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
   0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
   0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
   0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
   0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
```

```
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040,
};
unsigned short calculate_crc(const unsigned char *pv, int size)
{
    unsigned short crc = 0xFFFF;
    for ( ;size-- ; pv++)
    {
        crc = (crc >> 8) ^ crc_table[(crc ^ *pv) & 0xFF];
    }
    return crc;
}
```

Cast Iron Pipe Standard Classes

1.04 1.16 1.39 1.88 0.69 0.92 1.27 1.51 0.8 Wall **CLASS H** 14.00 16.00 18.00 10.00 12.00 20.00 27.76 24.26 1.75 27.76 24.00 8.00 6.00 lnch. 16.32 18.54 20.78 11.84 14.08 23.02 9.60 7.38 O.D. Inch 0.65 0.75 0.86 1.18 1.28 1.39 Wall 0.97 1.07 **CLASS G** 12.14 14.18 10.12 16.18 18.22 20.24 8.10 6.08 i pi 14.08 16.32 18.54 20.78 23.02 11.84 7.38 9.60 O.D. Inch 0.66 0.80 0.99 1.08 1.45 0.61 13.78 12.00 0.89 1.17 2.02 1.27 1.73 Wall **CLASS F** 24.00 30.00 39.60 36.00 1.80 40.04 36.00 14.00 16.00 18.00 10.00 20.00 8.10 6.00 lnch. 15.98 18.16 26.90 33.46 11.60 20.34 9.42 22.54 O.D. Inch 7.22 0.58 0.66 0.98 1.15 1.55 0.74 0.82 0.90 1.07 1.31 Wall ш 12.14 14.18 18.20 CLASS 6.06 8.10 10.12 18.16 16.20 20.24 24.28 33.10 30.00 lnch. 26.90 13.78 15.98 20.34 11.60 22.54 9.42 7.22 O.D. Inch 0.55 0.89 0.60 0.68 0.75 0.82 0.96 1.03 1.16 1.58 0.48 0.52 1.37 1.78 2.23 1.99 Wall 64.82 60.06 2.38 **CLASS D** 36.00 53.94 12.00 18.00 30.00 14.01 16.02 20.00 24.00 42.02 48.00 6.00 8.10 10.04 3.00 3.96 n. Li 15.65 17.80 22.06 26.32 32.74 39.16 45.58 51.98 58.40 11.40 13.50 19.92 O.D. Inch 7.10 9.30 3.96 5.00 0.80 0.45 0.48 0.56 0.62 0.68 0.74 0.92 1.05 1.36 1.54 64.20 60.20 2.00 Wall 0.51 0.87 30.00 1.20 1.71 54.00 1.90 76.88 72.10 2.39 CLASS C 12.14 16.20 18.18 24.22 35.98 42.02 10.16 47.98 15.65 14.17 20.22 8.18 3.06 4.04 6.08 Inch Ū. 45.10 51.40 57.80 17.80 32.40 13.50 19.92 22.06 26.32 38.70 11.40 O.D. Inch 7.10 9.30 5.00 3.96 0.70 1.03 1.15 1.28 0.62 0.66 0.75 0.80 0.89 1.42 72.10 1.95 Wall 0.45 0.48 0.42 0.51 0.57 54.00 1.55 60.06 1.67 2.22 ш 11.96 13.98 16.00 18.00 29.94 36.00 84.10 20.00 41.94 47.96 24.02 CLASS 6.14 4.10 8.03 9.96 3.12 lnch Inch 57.10 63.40 76.00 88.54 38.30 32.00 44.50 50.80 13.20 15.30 17.40 19.50 25.80 11.10 21.60 7.10 5.00 9.05 O.D. Inch 3.96 0.46 0.76 0.88 0.99 1.26 0.39 0.42 0.44 0.50 0.54 0.64 42.00 1.10 53.96 1.35 60.02 1.39 84.10 1.72 0.67 72.10 1.62 16.20 0.60 Wall 14.16 0.57 **CLASS A** 24.28 29.98 35.98 12.12 10.10 18.22 20.26 47.98 8.13 6.02 3.96 Inch 3.02 ġ 62.80 75.34 56.66 87.54 11.10 13.20 15.30 17.40 19.50 21.60 25.80 31.74 37.96 44.20 50.50 6.90 9.05 Inch 4.80 3.80 О. D. (Inches) Size 54 60 72 12 24 30 36 42 10 16 18 20 48 84 ω 4 ဖ ω

Ð	
0	
Ī	
C	
0	
L	
θ	
ť	
0	
Π	

Standard Classes

							oral Ir		ומסטם	n						
Pipe Size	Outside Diameter	Clas	s 50	Clas	s 51	Class	s 52	Clas	s 53	Clas	s 54	Class	s 55	Class	s 56	Cement Lining Std./Double Thickness
(inches)	(inches)	D	Wall	Q	Wall	Q	Wall	□	Wall	Q	Wall	D	Wall	D	Wall	
З	3.96			3.46	0.25	3.40	0.28	3.34	0.31	3.28	0.34	3.22	0.37	3.14	0.41	
4	4.80			4.28	0.26	4.22	0.29	4.16	0.32	4.10	0.35	4.04	0.38	3.93	0.44	
9	6.90	6.40	0.25	6.34	0.28	6.28	0.31	6.22	0.34	6.16	0.37	6.10	0.40	6.04	0.43	.123/.250
8	9.05	8.51	0.27	8.45	0.30	8.39	0.33	8.33	0.36	8.27	0.39	8.21	0.42	8.15	0.45	
10	11.10	10.32	0.39	10.46	0.32	10.40	0.35	10.34	0.38	10.28	0.41	10.22	0.44	10.16	0.47	
12	13.20	12.58	0.31	12.52	0.34	12.46	0.37	12.40	0.40	12.34	0.43	12.28	0.46	12.22	0.49	
14	15.30	14.64	0.33	14.58	0.36	14.52	0.39	14.46	0.42	14.40	0.45	14.34	0.48	14.28	0.51	
16	17.40	16.72	0.34	16.66	0.37	16.60	0.40	16.54	0.43	16.48	0.46	16.42	0.49	16.36	0.52	
18	19.50	18.80	0.35	18.74	0.38	18.68	0.41	18.62	0.44	18.56	0.47	18.50	0.50	18.44	0.53	.1875/.375
20	21.60	20.88	0.36	20.82	0.39	20.76	0.42	20.70	0.45	20.64	0.48	20.58	0.51	20.52	0.54	
24	25.80	25.04	0.38	24.98	0.41	24.92	0.44	24.86	0.47	24.80	0.50	24.74	0.53	24.68	0.56	
30	32.00	31.22	0.39	31.14	0.43	31.06	0.47	30.98	0.51	30.90	0.55	30.82	0.59	30.74	0.63	
36	38.30	37.44	0.43	37.34	0.48	37.06	0.62	37.14	0.58	37.40	0.45	36.94	0.68	36.84	0.73	
42	44.50	43.56	0.47	43.44	0.53	43.32	0.59	43.20	0.65	43.08	0.71	42.96	0.77	42.84	0.83	.250/.500
48	50.80	49.78	0.51	49.64	0.58	49.50	0.65	49.36	0.72	49.22	0.79	49.08	0.86	48.94	0.93	
54	57.10	55.96	0.57	55.80	0.65	55.64	0.73	55.48	0.81	55.32	0.89	55.16	0.97	55.00	1.05	

March, 2000

\geq
声

Steel, Stainless Steel, P.V.C.

Standard Schedules

			~	_	+		~			_		•	_		10	_	10		_	-0				
. 180	Wall	0.250	0.250	0.281	0.344	0.375	0.438			0.531	0.625	0.719	1.221	1.125	1.315	1.410	1.595	1.785	1.970	2.345				
SCH	₽	0.815	1.160	1.338	1.687	2.125	2.624			3.438	4.313	5.187	6.183	8.500	10.120	11.180	12.810	14.430	16.060	19.310				
140	Wall									0.438	0.500	0.562	0.719	0.844	1.000	1.095	1.220	1.375	1.500	1.535				
SCH.	Q									3.624	4.563	5.501	7.187	9.062	10.750	11.810	13.560	15.250	17.000	20.930				
120	Wall									0.438	0.500	0.562	0.719	0.844	1.000	1.095	1.220	1.375	1.500	1.535				
SCH.	₽									3.624	4.563	5.501	7.187	9.062	10.750	11.810	13.560	15.250	17.000	20.930				
100	Wall												0.594	0.719	0.845	0.845	1.035	1.160	1.285	1.535				
SCH.	₽												7.437	9.312	11.060	12.310	13.930	15.680	17.430	20.930				
80	Wall	0.179	0.191	0.200	0.218	0.276	0.300	070 0	0.318	0.337	0.375	0.432	0.500	0.594	0.690	0.750	0.845	0.940	1.035	1.220				
SCH.	Q	0.957	1.278	1.500	1.939	2.323	2.900	100 0	3.304	3.826	4.813	5.761	7.625	9.562	11.370	12.500	14.310	16.120	17.930	21.560				
ġ	Wall	0.179	0.191	0.200	0.218	0.276	0.300	0.00	0.318	0.337	0.375	0.432	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
X ST	₽	0.957	1.278	1.500	1.939	2.323	2.900		3.304	3.826	4.813	5.761	7.625	9.750	11.750	13.000	15.000	17.000	19.000	23.000	29.000	35.000	41.000	47.000
60	Wall												0.406	0.500	0.562	0.593	0.656	0.718	0.812	0.937				
SCH.	Q												7.813	9.750	11.626	12.814	14.688	16.564	18.376	22.126				
. 40	Wall	0.133	0.140	0.145	0.154	0.203	0.216		0.220	0.237	0.258	0.280	0.322	0.365	0.406	0.438	0.500	0.562	0.593	0.687	0.375	0.375	0.375	0.375
SCH	₽	1.049	1.380	1.610	2.067	2.469	3.068		3.548	4.026	5.047	6.065	7.981	10.020	11.938	13.124	15.000	16.876	18.814	22.626	29.250	35.250	41.250	47.250
D.	Wall									0.237	0.258	0.280	0.322	0.365	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375
LS	Q	1.049	1.380	1.610	2.067	2.469	3.068	07 1 0	3.548	4.026	5.047	6.065	7.981	10.02	12.00	13.25	15.25	17.25	19.25	23.25	29.25	35.25	41.25	47.25
I. 30	Wall												0.277	0.310	0.330	0.375	0.375	0.440	0.375	0.375	0.500	0.500		
sch	₽												8.071	10.13	12.09	13.25	15.25	17.12	19.25	23.25	29.00	35.00		
H. 20	Wall												0.250	0.250	0.250	0.315	0.315	0.315	0.375	0.375	0.500	0.500		
sci	₽												8.125	10.25	12.25	13.37	15.37	17.37	19.25	23.25	29.00	35.00		
H. 10 VALL)	Wall	0.109	0.109	0.109	0.109	0.120	0.120		0.120	0.120	0.134	0.134	0.148	0.165	0.180	0.250	0.250	0.250	0.250	0.250	0.315	0.315		
(LTV SCI	₽	1.097	1.442	1.682	2.157	2.635	3.260		3.700	4.260	5.295	6.357	8.329	10.42	12.39	13.50	15.50	17.50	19.50	23.50	29.37	35.37		
Ξ.	Wall	0.065	0.065	0.065	0.065	0.083	0.083		0.083	0.083	0.109	0.109	0.109	0.134	0.165									
ŝ	₽	1.185	1.530	1.770	2.245	2.709	3.334		3.834	4.334	5.345	6.407	8.407	10.482	12.420									
OUTSIDE	DIAMETER	1.315	1.660	1.900	2.375	2.875	3.500	000	4.000	4.500	5.563	6.625	8.625	10.750	12.750	14.000	16.000	18.000	20.000	24.000	30.000	36.000	42.000	48.000
Nominal	Pripe Size	٢	1.25	1.5	2	2.5	3	L	3.5	4	5	9	8	10	12	14	16	18	20	24	30	36	42	48

FPS TO GPM CROSS - REFERENCE (Schedule 40)

6	24.290	41.958	57.109	94.405	134.41	207.65	277.66	357.82	561.87	809.09	1403.0	2212.0	3141.0	3798.2	4957.2
8.5	22.941	39.627	53.936	89.160	126.95	196.11	262.23	337.94	530.65	764.14	1325.1	2089.1	2966.5	3587.2	4681.8
8	21.590	37.300	50.760	83.920	119.50	184.60	246.80	318.10	499.40	719.20	1247.0	1966.0	2792.0	3376.0	4406.0
7.5	20.240	34.960	47.590	78.670	112.00	173.00	231.40	298.20	468.20	674.20	1169.0	1843.0	2617.0	3165.0	4131.0
7	18.890	32.630	44.420	73.430	104.50	161.50	216.00	278.30	437.00	629.30	1091.0	1720.0	2443.0	2954.0	3856.0
6.5	17.540	30.300	41.250	68.180	97.080	150.00	200.50	258.40	405.80	584.30	1013.0	1598.0	2268.0	2743.0	3580.0
6	16.190	27.970	38.070	62.940	89.610	138.40	185.10	238.50	374.60	539.40	935.30	1475.0	2094.0	2532.0	3305.0
5.5	14.844	25.641	34.900	57.692	82.142	126.90	169.68	218.67	343.36	494.45	857.39	1351.8	1919.5	2321.1	3029.4
5	13.490	23.310	31.730	52.450	74.670	115.40	154.30	198.80	312.10	449.50	779.40	1229.0	1745.0	2110.0	2754.0
4.5	12.145	20.979	28.555	47.202	67.207	103.82	138.83	178.91	280.93	404.55	701.50	1106.0	1570.5	1899.1	2478.6
4	10.796	18.648	25.382	41.958	59.740	92.288	123.40	159.03	249.72	359.60	623.56	983.12	1396.0	1688.1	2203.2
3.5	9.4462	16.317	22.209	36.713	52.272	80.752	107.98	139.15	218.50	314.65	545.61	860.23	1221.5	1477.1	1927.8
3	8.097	13.99	19.04	31.47	44.80	69.22	92.55	119.3	187.3	269.7	467.7	737.3	1047.0	1266.0	1652.0
2.5	6.7473	11.655	15.864	26.224	37.337	57.680	77.127	99.394	156.07	224.75	389.72	614.45	872.49	1055.1	1377.0
7	5.3978	9.3239	12.691	20.979	29.870	46.144	61.702	79.515	124.86	179.80	311.78	491.56	697.99	844.05	1101.6
1.5	4.0484	6.9929	9.5182	15.734	22.402	34.608	46.276	59.636	93.645	134.85	233.83	368.67	523.49	633.04	826.20
-	2.6989	4.6620	6.3454	10.489	14.935	23.072	30.851	39.758	62.430	89.899	155.89	245.78	348.99	422.03	550.80
I.D. INCH	1.05	1.38	1.61	2.07	2.47	3.07	3.55	4.03	5.05	6.06	7.98	10.02	11.94	13.13	15.00
Nominal Pipe (Inches)	1	1.25	1.5	2	2.5	3	3.5	4	5	9	8	10	12	14	16

FPS X .3048 = MPS GPM X .0007 = GPD GPM X 3.7878 = LPM

FPS TO GPM: GPM = (PIPE ID)² X VELOCITY IN FPS X 2.45 GPM TO FPS: FPS = $\frac{GPM}{(ID)^2 X 2.45}$ **TEDLAND**

FPS TO GPM CROSS - REFERENCE (Schedule 40)

6	6277.7	7795.3	11283	14047	16360	18850	21516	24358	27376	37489	50740	64198	79553	114531	155828
8.5	5928.9	7362.2	10656	13266	15451	17803	20320	23004	25855	35406	47922	60631	75134	108168	147171
8	5580.0	6929.1	10029	12486	14542	16755	19125	21651	24334	33323	45103	57065	70714	101805	138514
7.5	5231.0	6496.0	9402.4	11706	13633	15708	17930	20298	22813	31241	42284	53498	66294	95443	129856
7	4883.0	6063.0	8775.6	10925	12725	14661	16734	18945	21292	29158	39465	49931	61875	89080	121199
6.5	4534.0	5629.9	8148.8	10145	11816	13614	15539	17592	19772	27075	36646	46365	57455	82717	112542
6	4185.0	5196.8	7522.0	9364.5	10907	12566	14344	16238	18251	24992	33827	42798	53035	76354	103885
5.5	3836.3	4763.8	6895.1	8584.1	9997.8	11519	13148	14885	16730	22910	31008	39232	48616	69991	95228
5	3488.0	4330.7	6268.3	7803.7	9088.9	10472	11953	13532	15209	20827	28189	35665	44196	63628	86571
4.5	3138.8	3897.6	5641.5	7023.4	8180.0	9424.9	10758	12179	13688	18744	25370	32099	39777	57266	77914
4	2790.1	3464.6	5014.6	6243.0	7271.2	8377.6	9562.5	10826	12167	16662	22551	28532	35357	50903	69257
3.5	2441.3	3031.5	4387.8	5462.6	6362.3	7330.4	8367.2	9472.4	10646	14579	19732	24966	30937	44540	60600
3	2093.0	2598.4	3761.0	4682.2	5453.4	6283.2	7171.9	8119.2	9125.4	12496	16913	21399	26518	38177	51943
2.5	1743.8	2165.3	3134.1	3901.9	4544.5	5236.0	5976.5	6766.0	7604.5	10414	14095	17833	22098	31814	43285
7	1395.0	1732.0	2507.0	3121.0	3636.0	4189.0	4781.0	5413.0	6084.0	8331.0	11276	14266	17678	25451	34628
1.5	1046.3	1299.0	1880.0	2341.0	2727.0	3142.0	3586.0	4060.0	4563.0	6248.0	8457.0	10700	13259	19089	25971
-	697.52	866.14	1253.7	1560.7	1817.8	2094.4	2390.6	2706.4	3041.8	4165.4	5637.8	7133.1	8839.2	12726	17314
I.D. INCH	16.88	18.81	22.63	25.25	27.25	29.25	31.25	33.25	35.25	41.25	47.99	53.98	60.09	72.10	84.10
Nominal Pipe (Inches)	18	20	24	26	28	30	32	34	36	42	48	54	60	72	84

FPS X .3048 = MPS GPM X .0007 = GPD GPM X 3.7878 = LPM

FPS TO GPM: GPM = (PIPE ID)² X VELOCITY IN FPS X 2.45 GPM TO FPS: FPS = $\frac{GPM}{(ID)^2 X 2.45}$

RETURN OF EQUIPMENT/SALES INFORMATION

CONTACTS AND PROCEDURES

Customer Service/Application Engineer:

If you have a question regarding order status, placing an order, reviewing applications for future purchases, or wish to purchase a new flow meter, please contact us at:

HEDLAND Division of Racine Federated, Inc. 8635 Washington Avenue Racine, WI 53406-3738 PH: 800-433-5263 or 262-639-6770 FX: 800-245-3569 or 262-639-2267

Service/Repair Department:

If you already purchased equipment and have an operation problem or require service, please contact our Service Department:

HEDLAND Division of Racine Federated, Inc. 8635 Washington Avenue Racine, WI 53406-3738 PH: 800-433-5263 or 262-639-6770 FX: 800-245-3569 or 262-639-2267

Return Goods Authorization:

When returning equipment, it is necessary for you to contact our Service Department at 800-433-5263 or 262-639-6770 to obtain an RGA number for the authority and proper tracking of your material and its prompt inspection and return. All returns of equipment go to the following address:

HEDLAND Division of Racine Federated, Inc. 8635 Washington Avenue Racine, WI 53406-3738 RGA #0000

Hedland Division of Racine Federated Inc.

Limited Warranty and Disclaimer

Hedland, Division of Racine Federated Inc. warrants to the end purchaser, for a period of one year from the date of shipment from the factory, that all flow meters manufactured by it are free from defects in materials and workmanship. This warranty does not cover products that have been damaged due to abnormal use, misapplication, abuse, lack of maintenance, or improper installation. Hedland's obligation under this warranty is limited to the repair or replacement of a defective product, at no charge to the end purchaser, if the product is inspected by Hedland and found to be defective. Repair or replacement is at Hedland's discretion. An returned goods authorization number must be obtained from Hedland before any product may be returned for warranty repair or replacement. The product must be thoroughly cleaned and any process chemicals removed before it will be accepted for return.

The purchaser must determine the applicability of the product for its desired use and assumes all risks in connection therewith. Hedland assumes no responsibility or liability for any omissions or errors in connection with the use of its products. Hedland will under no circumstances be liable for any incidental, consequential, contingent or special damages or loss to any person or property arising out of the failure of any product, component or accessory.

All expressed or implied warranties, including the implied warranty of merchantability and the implied warranty of fitness for a particular purpose or application are expressly disclaimed and shall not apply to any products sold or services rendered by Hedland.

The above warranty supersedes and is in lieu of all other warranties, either expressed or implied and all other obligations or liabilities. No agent or representative has any authority to alter the terms of this warranty in any way.

8635 WASHINGTON AVENUE RACINE, WI 53406-3738 USA

Tel: 1-800-433-5263 or 1-262-639-6770 Fax: 1-800-245-3569 or 1-262-639-2267

E-mail: hedlandtechhelp@racinefed.com Web site: hedland.com